
RISC OS Networking
Example manual for ROUGOL

www.princexml.com
Prince - Non-commercial License
This document was created with Prince, a great way of getting web content onto paper.

Networking
Freeway 3

Introduction and Overview 3
Technical Details 4
Service calls 5
UpCalls 7
SWI calls 8
*Commands 17

Resolver 19

Introduction and Overview 19
Terminology 20
Technical Details 21
System variables 23
Service calls 30
SWI calls 33
*Commands 38

MimeMap 40

Introduction 40
Overview 41
Technical details 42
System variables 44
SWI calls 45
*Commands 47

Indexes
Commands 50

SWIs 51

... by number 52

UpCalls 53

... by number 54

Services 55

... by number 56

SysVars 57

Selected chapters for Networking extracted as a demonstration of the RISC OS PRMs using PRM-in-XML.

Contents

2

Introduction and Overview
Freeway is a narrow software layer which maintains information about the location of objects on a
network, in a decentralised fashion.

Objects are classified according to Freeway Type. At the Freeway level the attributes of an object are its
name, location, an optional descriptor and an optional authentication value. All other characteristics are
undefined.

Freeway itself only knows about the IP location of objects on the network. It is not concerned with how
those objects may be accessed, or with any specific access control mechanisms. These areas are
handled by higher-level type-specific application software, as needed. Each type will have a 'controlling'
application.

Freeway types are created by Acorn as required : third parties may request a type via the usual defined
channel for allocation requests. Each type has a unique identifier : for example, if there is a need for
software to enable 'Bach partitas' to be shared across a network, then an available Freeway type number
will be allocated by Acorn - e.g. 97=BachPartitas - and then the controlling application will be written to
'share' Bach partitas - whatever that means.

Freeway

3

RISC O
S Program

m
ers Reference M

anuals

Technical Details
Type number

This is a 16-bit integer identifying a Freeway type. The following type numbers are allocated to Acorn
Access+. (Informal names with no significance in software will also be allocated, for easier human
reference)

Type Informal name

1 Discs

2 Printers

5 Hosts

In Acorn Access, ShareFS is the controlling application for types Discs and Hosts, and !Printers is the
controlling application for type Printers.

Object name

This is the name of an object.

An object name is unique within the set of objects of the same type within a site. Object names are
terminated by a control character (and will return a terminator of zero on output), case independent,
alphanumeric strings, created by users or application software. Maximum length is 64 bytes, including
the terminator.

Object descriptor

This provides extra information about the object.

Its format is undefined at this level - it has significance to higher-level application software. Object
descriptors are arrays of bytes of any value, maximum length 255.

In Acorn Access+ the descriptor for type Discs indicates whether a disc is shared protected or
unprotected, or as a CDROM or subdirectory, and visible or invisible to other desktop users.

The descriptor for type Printers is a 'Printer Type' string.

The descriptor for type Hosts is null.

Object authentication value

Objects are either authenticated or unauthenticated. Authenticated objects require an authentication
value to be provided before their attributes are made visible. An authentication value is a 32 bit integer.
The authentication value of zero is reserved and should not be used.

Refresh interval

The Freeway software in each computer will periodically re-notify other computers about
unauthenticated objects which are held by the local machine, so that they know that the objects
continue to be accessible. This permits, for example, other machines to know when a computer holding
Freeway objects has been powered down. The renotification period is called the "refresh interval", and is
determined by the Freeway software and is typically 30 seconds.

Technical Details

4

Service calls

Service_FreewayStarting
(Service Call &95)

Freeway is starting up

On entry
R1 = service call number
R2 = flags :

Bit(s) Meaning

0-31 Reserved, must be 0

On exit
R1 preserved

Use

This service is issued when the Freeway module starts up. You may not call any Freeway SWIs during
this service. If you wish to register with the module you should use a transient callback to do so.

Related services
Service_FreewayTerminating (on page 6)

Freeway

5

RISC O
S Program

m
ers Reference M

anuals

Service_FreewayTerminating
(Service Call &96)

Freeway is terminating

On entry
R1 = service call number
R2 = flags :

Bit(s) Meaning

0-31 Reserved, must be 0

On exit
R1 preserved

Use

This service is issued when the Freeway module is killed or shuts down for any other reason. You may
not call any Freeway SWIs during this service.

Related services
Service_FreewayStarting (on page 5)

Service calls

6

UpCalls

UpCall_Freeway
(UpCall &C)

State of Freeway objects has changed.

On entry
R0 = UpCall number
R1 = Reason code :

Value Meaning

0 Object has been added

1 Object has been removed

2 Object attributes have changed

3 Local object deleted by Freeway
R2 = type number
R3 = pointer to object name, 0 terminated
R4 = length of object descriptor
R5 = pointer to object descriptor
R6 = IP address of device which holds or held this object

On exit
R0 - R6 preserved

Use

This call warns controlling applications that the named object has been added, removed or changed. It
is also issued when Freeway has detected that the information held about a locally held object is
unreliable, (as a result of possible temporary name duplication, for example) and has removed it
unilaterally. It is issued on callback, and the contents of the supplied name and descriptor buffers are
guaranteed not to change provided they are read from within the application's UpCall handler.

Related SWIs
SWI Freeway_Write (on page 10)

Freeway

7

RISC O
S Program

m
ers Reference M

anuals

SWI calls

Freeway_Register
(SWI &47A80)

Register or deregister interest in objects of a given Freeway type.

On entry
R0 = flags :

Bit(s) Meaning

0 0 - register interest

1 - deregister interest

1 0 - interested in unauthenticated objects

1 - interested in authenticated objects

2 0 - R3 not valid

1 - R3 is pointer to type 'name' (<= 15 characters, 0 terminated)

3-31 reserved - must be set to 0
R1 = type number
R2 = authentication value if R0 bit 1 is set, otherwise undefined
R3 = pointer to type 'name' if R0 bit 2 is set, otherwise undefined

On exit
R0 - R3 preserved

Interrupts
Interrupts are undefined
Fast interrupts are enabled

Processor mode
Processor is in SVC mode

Re-entrancy
SWI is not re-entrant

Use

This SWI enables a controlling application to register interest in authenticated or unauthenticated
objects of a particular Freeway type with the local Freeway software, and also to give a 'name' to that
type (this name is of no significance to the software, it's just for the convenience of the human user).
Freeway will hold information arriving from the network about a remote object only if one or more
registrations of interest have been made locally in that object's type. If the object is authenticated then at
least one of those registrations must have included an authentication value which matches the object's
own. An error is returned if insufficient free memory exists.

SWI calls

8

Related SWIs
SWI Freeway_Write (on page 10)
SWI Freeway_Read (on page 12)

Freeway

9

RISC O
S Program

m
ers Reference M

anuals

Freeway_Write
(SWI &47A81)

Add or remove an object of a given type.

On entry
R0 = flags :

Bit(s) Meaning

0 0 - add object

1 - remove object

1 1 - object is authenticated

2-31 reserved - must be set to 0
R1 = type number
R2 = pointer to object name, 0 terminated
R3 = length of object descriptor
R4 = pointer to object descriptor, or 0 for null descriptor, or when R0 bit 0 is set
R5 = object authentication value if R0 bit 1 is set, otherwise undefined

On exit
R0 - R5 preserved

Interrupts
Interrupts are undefined
Fast interrupts are enabled

Processor mode
Processor is in SVC mode

Re-entrancy
SWI is not re-entrant

SWI calls

10

Use

This SWI adds or removes a locally held object of a given type. If the object is unauthenticated then
other computers are notified immediately, otherwise notification is withheld until a remote computer
requests it. An error is returned if the type number is not known (i.e. if Freeway_Register has not been
called with this type number), or if an object is added and a remote object of the given name and type
already exists, or if an object is removed and no local object of the given name and type is currently
held, or if no memory exists to store information about the object.

If R0 bit 0 is clear and the object named is already held as a local object, the object's descriptor and
authentication value are updated if they differ from those passed to the SWI.

N.B.: Controlling applications should be prepared to receive upcall UpCall_Freeway, reason code object
deleted, referring to any object previously added successfully via SWI Freeway_Write. This is to cover
the possibility of Freeway deciding at any time that the information held about an object is unreliable
and so deciding to remove it unilaterally, for any reason, e.g. if a remote object is created with the same
name as a local object.

Related SWIs
SWI Freeway_Read (on page 12)

Freeway

11

RISC O
S Program

m
ers Reference M

anuals

Freeway_Read
(SWI &47A82)

Read attributes of an object.

On entry
R0 = flags :

Bit(s) Meaning

0 1 - authentication value provided

1-31 reserved - must be set to 0
R1 = type number
R2 = pointer to object name, 0 terminated
R3 = length of buffer for object descriptor
R4 = pointer to buffer for object descriptor, or 0 to read descriptor length
R5 = object authentication value if R0 bit 0 is set, otherwise undefined

On exit
R0 - R2 preserved

R3 = length of held object descriptor
R4 preserved
R5 = IP address of computer which holds the object

Interrupts
Interrupts are undefined
Fast interrupts are enabled

Processor mode
Processor is in SVC mode

Re-entrancy
SWI is not re-entrant

Use

This SWI reads information about the attributes of an object. The type number and object name must
be provided. The SWI returns the IP address of the holder, and optionally the descriptor. The length of a
held object descriptor may be read by setting R4=0 on entry. However in this case there is no guarantee
that the object attributes will not have changed, or that the object will still exist, if the SWI is called again
some time later with the same object name. An error is returned if the type number is unknown, or the
object name is unknown, or if a supplied authentication value does not match the object's own
authentication value, or if a supplied object descriptor buffer is too short; in this case the actual length is
returned in R3.

Related SWIs
SWI Freeway_Write (on page 10)

SWI calls

12

Freeway_Enumerate
(SWI &47A83)

Enumerate objects of a given type.

On entry
R0 = flags :

Bit(s) Meaning

0 0 - enumerate unauthenticated objects

1 - enumerate authenticated objects

1-31 reserved - must be set to 0
R1 = type number
R2 = length of buffer for object name
R3 = pointer to buffer for object name, or 0 to read length of name
R4 = length of buffer for object descriptor
R5 = pointer to buffer for object descriptor, or 0 to read descriptor length
R6 undefined
R7 = enumeration context (0 to start)
R8 = object authentication value if R0 bit 0 is set, otherwise undefined

On exit
R0 preserved
R1 preserved
R2 = length of held object name, including terminator
R3 preserved
R4 = length of held object descriptor
R5 preserved
R6 = IP address of computer which holds the object
R7 = next enumeration context, or -1 if no more
R8 preserved

Interrupts
Interrupts are undefined
Fast interrupts are enabled

Processor mode
Processor is in SVC mode

Re-entrancy
SWI is not re-entrant

Freeway

13

RISC O
S Program

m
ers Reference M

anuals

Use

This SWI allows a controlling application to enumerate currently held authenticated or unauthenticated
objects of a given type, obtaining their names, location IP addresses, and descriptors if present. If an
authentication value is provided then only those objects whose actual authentication value matches the
supplied value are enumerated. If no authentication value is supplied then only unauthenticated objects
are enumerated. The length of the held object name or descriptor may be read without filling in buffers
by setting R3=0 or R5=0 respectively, on entry. However in this case there is no guarantee that the
object attributes will not have changed, or that the object will still exist, if the SWI is called again some
time later with the same enumeration reference.

If R7 is returned -1 then there were no further known objects of that type - the object name buffer will
not have been filled in, and R6 is undefined.

An error is returned if the type number is unknown, or if a supplied name or descriptor buffer is too
short. In the latter cases the actual name and descriptor lengths are returned in R2 and R4.

Related SWIs
SWI Freeway_Read (on page 12)

SWI calls

14

Freeway_Status
(SWI &47A84)

This SWI call is for internal use only. You must not use it in your own code.

Freeway

15

RISC O
S Program

m
ers Reference M

anuals

Freeway_Serial
(SWI &47A85)

This SWI call is for internal use only. You must not use it in your own code.

SWI calls

16

*Commands

*FWShow
Show currently known unauthenticated objects

Syntax
*FWShow

Parameters
None

Use

This command is used to show the names and holder IP addresses of all unauthenticated objects of all
types currently known about by this machine. Local objects are indicated via a leading asterisk.

Examples
*FWShow

Related SWIs
SWI Freeway_Enumerate (on page 13)

Freeway

17

RISC O
S Program

m
ers Reference M

anuals

Document information
Maintainer(s): RISCOS Ltd <developer@riscos.com>

History: Revision Date Author Changes
1 ROL Initial version

Disclaimer: Copyright © Pace Micro Technology plc, 2001.

Portions copyright © RISCOS Ltd, 2001-2004.

Published by RISCOS Limited.

No part of this publication may be reproduced or transmitted, in any form or by any means,
electronic, mechanical, photocopying, recording or otherwise, or stored in any retrieval
system of any nature, without the written permission of the copyright holder and the
publisher, application for which shall be made to the publisher.

Document information

18

mailto:developer@riscos.com

Introduction and Overview
Internet based applications are required to connect to other hosts throughout the world. Location of
these hosts is via numeric addresses which are determined by human readable names. The process of
converting from names to addresses is performed by 'Domain Name Servers' (DNS).

Under RISC OS, communication with DNS is performed by the Resolver module.

This chapter describes how the Resolver module is configured to use DNS, and applications should
interact with it.

Resolver

19

RISC O
S Program

m
ers Reference M

anuals

Terminology
The Resolver module provides shared Internet IP address resolution facilities to the system.

The Hosts file is the file InetDBase:Hosts. It is used to initialise the local DNS cache with entries.

DNS servers are queried by the Resolver and the results are cached.

Application is used within this chapter as a description of the Resolver querant, but this may also apply
to Modules.

Terminology

20

Technical Details
How the Resolver works

The Resolver functions as follows :

• The user configures the resolver through serial variables. Usually this is performed on machine
start up from pre-set values.

• When an address is requested the application requests a lookup from the Resolver.
• The Resolver module checks its cached entries and if one exists that matches the request, it is

returned immediately. Otherwise a request is sent to the configured DNS servers.
• The application continues to request a lookup from the Resolver. The Resolver continues to try to

look up the request until it times out.
• If the request to the DNS servers is satisfied, or a failure is returned, the result is returned to the

application.
• If the request is not responded to within a period, a failure is returned to the application.

SWI interface

The module provides two interfaces for resolving addresses :

• SWI Resolver_GetHostByName (on page 33) to provide an equivilent operation to that expected by
unix applications. This SWI will not return until a result or failure has been determined.

• SWI Resolver_GetHost (on page 34) to provide a multi-tasking version of GetHostByName. This SWI
returns a notification that the resolve is 'in progress' and should be polled until a result has been
received.

In addition, there is a means for controlling the cache :

• SWI Resolver_CacheControl (on page 37) can be used to perform various operations on the cache.

Host entries

All results are returned in the form of NetBSD standard 'hostent' structures. These structures should be
considered to be read only by the application.

A hostent has the following structure :

Offset Contents

0 Pointer to host name

4 Pointer to 0 terminated list of pointers to aliases for this host

8 Address type (usually AF_INET)

12 Address length (4 for AF_INET)

16 Pointer to 0 terminated list of addresses

System variables

The Resolver module uses a number of system variables for its configuration. These determine how and
where it resolves Internet addresses from. In general, these variables are initialised during machine
startup. They may be modified by the user once the Internet stack has started. They will be read when
the re-configure call is made to the Resolver, either via the Resolver_CacheControl SWI or by the
*ResolverConfig command. In addition, they will be re-read whenever the InetDBaseChanged service is

Resolver

21

RISC O
S Program

m
ers Reference M

anuals

issued.

Technical Details

22

System variables

Inet$Resolvers
Lists the DNS servers that should be queried

Use

This variable lists the DNS servers that will be queried during resolution requestes. It consists of a space
separated list of dotted IP addresses. Up to three addresses may be supplied. Addresses will be queried
in the order supplied.

Related APIs
None

Resolver

23

RISC O
S Program

m
ers Reference M

anuals

Inet$Hostname
Local name of this host

Use

This variable gives the local name of this host. Attempts to set this variable to a fully qualified hostname
will result in it and Inet$LocalDomain being set to the correct values.

Related system variables
Inet$LocalDomain (on page 25)

System variables

24

Inet$LocalDomain
Local domain name

Use

This variable gives the local domain name for the network this host is connected to. Together with
Inet$Hostname, this provides the name of this host on a network. It may be that this host name is not
visible from certain networks due to firewalls, proxying and other network-specific issues.

Related system variables
Inet$Hostname (on page 24)

Resolver

25

RISC O
S Program

m
ers Reference M

anuals

Inet$SearchDomains
List of domains to use search hostnames in

Use

This variable describes the domains which should be appended to failed host lookups in an attempt to
resolve them.

After being modified, the Resolver module must be notified by requesting it re-read its configuration.

Related * commands
*ResolverConfig (on page 38)

Related SWIs
SWI Resolver_CacheControl (on page 37)

Related system variables
Inet$LocalDomain (on page 25)

System variables

26

Inet$ResolverRetries
Number of times that the resolver should re-try resolving

Use

This variable should be set to the number of retries that the resolve should made. During resolution, the
Resolver may get no response to its requests. This may be due to network bandwidth limitations, or a
busy server. The number of retries may be configured to allow for greater numbers of retries if
necessary.

After being modified, the Resolver module must be notified by requesting it re-read its configuration.

Related * commands
*ResolverConfig (on page 38)

Related SWIs
SWI Resolver_CacheControl (on page 37)

Related system variables
Inet$ResolverDelay (on page 28)

Resolver

27

RISC O
S Program

m
ers Reference M

anuals

Inet$ResolverDelay
Delay between resolution requests

Use

This variable should be set to the number of seconds that should be waited between resolution requests.
During resolution, the Resolver may get no response to its requests. This may be due to network
bandwidth limitations, or a busy server. The delay between retries may be configured to allow for faster
requests (if the server is known to accept such requests - consult the server operators) or longer delays
if the server is known to be under load.

After being modified, the Resolver module must be notified by requesting it re-read its configuration.

Related * commands
*ResolverConfig (on page 38)

Related SWIs
SWI Resolver_CacheControl (on page 37)

Related system variables
Inet$ResolverRetries (on page 27)

System variables

28

Inet$ResolverServer
Determines whether the DNS relay is active

Use

This variable should be set to '1' to configure the DNS relay to be active, or '0' to deactivate it.

After being modified, the Resolver module must be notified by requesting it re-read its configuration.

Related * commands
*ResolverConfig (on page 38)

Related SWIs
SWI Resolver_CacheControl (on page 37)

Resolver

29

RISC O
S Program

m
ers Reference M

anuals

Service calls

Service_InternetVars
(Service Call &80C41)

Notification of variable changes

On entry
R0 = reason code :

Value Meaning

0 Service_InternetVars 0 (on page 31)

1 Service_InternetVars 1 (on page 32)

other Reserved
R1 = service call number

On exit
R0 preserved
R1 preserved

Use

This service is issued by the Resolver module when certain variables that it monitors change. Other
components may use the service as an indication that their configuration has changed.

Related APIs
None

Service calls

30

Service_InternetVars 0
(Service Call &80C41)

Change in the location of the internet database

On entry
R0 = 0 (reason code)
R1 = service call number

On exit
R0 preserved
R1 preserved

Use

This service is issued by the Resolver module when InetDBase$Path is changed. Components which
hold resources in the database should re-read those resources.

Related services
Service_InternetVars (on page 30)

Resolver

31

RISC O
S Program

m
ers Reference M

anuals

Service_InternetVars 1
(Service Call &80C41)

Change in the name of this host

On entry
R0 = 1 (reason code)
R1 = service call number

On exit
R0 preserved
R1 preserved

Use

This service is issued by the Resolver module when Inet$Hostname (on page 24) is changed. Components
which use the hostname to refer to objects should update their concept of the local name. If complex
operations are required, clients should schedule a transient callback.

Related services
Service_InternetVars (on page 30)

Related system variables
Inet$Hostname (on page 24)

Service calls

32

SWI calls

Resolver_GetHostByName
(SWI &46000)

Initiate a non-blocking name resolution

On entry
R1 = Pointer to host name string

On exit
R0 = Internet error number, indicating the state of the lookup :

Value Meaning

0 Resolve successful

-1 Host was not found

-2 Remove request failure, eg no response from servers

36 Resolve in progress

other Standard internet error numbers
R1 = Pointer to 'hostent' structure if successful, or 0 if failed

Interrupts
Interrupts are undefined
Fast interrupts are enabled

Processor mode
Processor is in SVC mode

Re-entrancy
SWI is not re-entrant

Use

This SWI is provided primarily for backwards compatibility, since new network applications can use the
more flexible SWI Resolver_GetHost (on page 34).

The main use of this SWI is by the simple ports of unix applications using the gethostbyname() function
call.

Although this SWI is marked as non-reentrant, it is expected that this SWI be preempted by OS_UpCall
6 when used in a TaskWindow. This is a safe operation.

Related SWIs
SWI Resolver_GetHost (on page 34)

Resolver

33

RISC O
S Program

m
ers Reference M

anuals

Resolver_GetHost
(SWI &46001)

Initiate a non-blocking name resolution

On entry
R1 = Pointer to host name string

On exit
R0 = Internet error number, indicating the state of the lookup :

Value Meaning

0 Resolve successful

-1 Host was not found

-2 Remove request failure, eg no response from servers

36 Resolve in progress

other Standard internet error numbers
R1 = Pointer to 'hostent' structure if successful, or 0 if failed

Interrupts
Interrupts are undefined
Fast interrupts are enabled

Processor mode
Processor is in SVC mode

Re-entrancy
SWI is not re-entrant

SWI calls

34

Use

This SWI provides a DNS resolution facility that runs in the background (unlike SWI
Resolver_GetHostByName (on page 33)). Applications must poll the Resolver module for the state of the
resolution.

If the hostname is a valid cache item, or present in the hosts file on disc, it is returned immediately in R1,
with R0 set to 0.

If the hostname is a cache item, marked as failed, then R1 is set to 0 and R0 is either -1 (host not found),
or -2 (remote failure. eg, configured resolver didn't respond).

If the hostname is a cache item, marked as pending, then R1 is set to 0 and R0 is EINPROGRESS (36
decimal). Items are marked as pending when a remote resolver lookup is in progress. The calling
program is expected to periodically call Resolver_GetHost until a valid hostent is returned, or an error
condition occurs.

Because name lookups can take anything up to 20 seconds or so, it is important to be able to give
feedback to the user on the status of the lookup, as well as giving the foreground application time to
perform other tasks.

Cache sweeps occur periodically - pending items are marked as failed (remote failure) after a short
period, failed items are removed after a longer period, and valid items are removed after 24 hours.

If there is a configuration error (such as Inet$Resolvers (on page 23) not being set), then a RISC OS error
block pointer is returned in R0, and the V flag is set on exit.

Examples

The calling program might run something like:

REM 'EINPROGRESS' error number is 36 decimal
REPEAT

SYS "Resolver_GetHost","host.net" TO status,hostent;flags
error = (flags AND 1) == 1
REM Perhaps inform user of the state of this lookup

UNTIL (error) OR (status != EINPROGRESS)
REM hostent is a valid pointer, or 0

Related SWIs
SWI Resolver_GetHostByName (on page 33)

Resolver

35

RISC O
S Program

m
ers Reference M

anuals

Resolver_GetCache
(SWI &46002)

This SWI call is for internal use only. You must not use it in your own code.

SWI calls

36

Resolver_CacheControl
(SWI &46003)

Perform operations on the Resolver cache

On entry
R0 = Reason code :

Value Meaning

0 Flush cache of failed lookups

1 Flush cache of all items

2 Flush cache of hosts file items

3 Re-read configuration

8 Disable caching of failed lookups

9 Enable caching of failed lookups

other Reserved

On exit
R0 preserved

Interrupts
Interrupts are undefined
Fast interrupts are enabled

Processor mode
Processor is in SVC mode

Re-entrancy
SWI is not re-entrant

Use

This SWI is provided to allow a calling application to control the Resolver cache in a limited way.
Currently, the only reason codes supported are to force flushes of certain cache entries, and dis(abling)
of the caching of lookups that fail.

Caching of lookup failures is disabled by default. You might wish to enable the caching of lookup
failures if you are sure that any failures are genuine bad host errors and not due to packet loss, remote
server timeouts, etc.

Related * commands
*ResolverConfig (on page 38)

Resolver

37

RISC O
S Program

m
ers Reference M

anuals

*Commands

*ResolverConfig
Request that the resolver re-read its configuration

Syntax
*ResolverConfig

Parameters
None

Use

This command is used to request that the Resolver re-read the system variables for configuration.

Examples
*ResolverConfig

Related SWIs
SWI Resolver_CacheControl (on page 37)

*Commands

38

Document information
Maintainer(s): RISCOS Ltd <developer@riscos.com>

History: Revision Date Author Changes
1 ROL Initial version
2 22 Jan 2003 ROL Corrected unfinished sentence

• Documentation for Service_InternetVars had an
unfinished sentence about clients using it.

Disclaimer: Copyright © Pace Micro Technology plc, 2001.

Portions copyright © RISCOS Ltd, 2001-2004.

Published by RISCOS Limited.

No part of this publication may be reproduced or transmitted, in any form or by any means,
electronic, mechanical, photocopying, recording or otherwise, or stored in any retrieval
system of any nature, without the written permission of the copyright holder and the
publisher, application for which shall be made to the publisher.

Resolver

39

RISC O
S Program

m
ers Reference M

anuals

mailto:developer@riscos.com

Introduction
In order to determine the operations which can be performed on data, a system of 'typing' is used. On
different operating systems and environments, different typing systems are employed:

• Under RISC OS, the typing system is known as 'file types' and is determined by numeric identifiers
(the filetype of an object) in strict range (0-4095).

• Under DOS and Windows-like systems, the type system is known as an 'file extension' (sometimes
known as a 'dot extension') and is determined by a string - traditionally of three characters -
appended to the filename.

• Under unix-like systems, the type system varies but most commonly a similar system to that
employed by DOS and Windows is used, or a system based on the content of the file.

• On Apple machines, the type is a fixed length binary identifier (8 bytes), split into two fields (4
bytes each) - the vendor identifier and the file type.

With this diverse selection of type systems in use and in order to try to standardise the manner in which
such types are identified, a system of 'media types' (also known as the 'content type') was developed.
This is colloqially known as the 'MIME type', from its use in the most widespread use of its application,
Multipurpose Internet Mail Extensions. This media type categorises the data by category, providing a
number of general categories into which data falls (for example, text or video).

The MimeMap module provides a central service for mapping between most of the types available. Of
those described above, the MimeMap module does not presently cater for file identification by its
contents.

The MimeMap module

40

Overview
When the module is initialised (either on being loaded, or during boot up) it reads the file
Inet$MimeMappings (on page 44) and stores the parsed file internally. If the system variable is changed,
or the module is explicitly requested, the old version will be discarded and the file reparsed.

The MimeMap module can handle 5 different file typing schemes:

• RISC OS file type by number, eg &FFF
• RISC OS file type by name, eg Text
• Media type string, eg text/plain
• File extension string, eg .txt
• Mac type/creator pair, eg "ttxtTEXT"

Any type can be converted to any other type by the module should such a mapping exist in the file.
Dependant on the settings in the MimeMap configuration, certain conversions may not be possible. For
some of the conversions, wildcards (fields identifying multiple potential matches) may be available.

Using the module

In order to ensure that type conversion is performed in a consistent and maintainable manner, it is
recommended that type conversions are - whereever possible - performed through the MimeMap
module. Typical applications which would require translations to be performed would be network file
transfers (for example remote filing systems, FTP or HTTP transfers), non-native hardware transfers
(for example CD-ROM data, floppy discs), and collated file processing (for example MIME format
messages such as email).

As supplied, the RISC OS filing systems DOSFS and CDFS support the use of the MimeMap module.

The MimeMap module

41

RISC O
S Program

m
ers Reference M

anuals

Technical details
Type formats

Because the types supported by the MimeMap module are represented in different ways, a 'type format'
is used to distinguish between each of the types in SWI calls.

Value Name Meaning

0 MMM_TYPE_RISCOS RISC OS file type passed as an 32 bit number

1 MMM_TYPE_RISCOS_STRING RISC OS file type passed as a pointer to a zero terminated
string

2 MMM_TYPE_MIME MIME content type passed as a pointer to a zero terminated
string

3 MMM_TYPE_DOT_EXTN File extension (without the preceeding period) as a pointer to
a zero terminated string

4 MMM_TYPE_MAC Mac type as a pointer to a 8 byte block

Type representation

The types listed above are represented textually within the MimeMap database file and as parameters to
*MimeMap (on page 47). The following sections describe each of the types as used in these locations.

Media types

Media types are supplied in the form 'major/minor'. The format and meaning is defined in RFCs
2045-2049 (Request For Comments, the main repository of internet standards) and a database of
registered media types is maintained by IANA (Internet Assigned Numbers Authority).

RISC OS type number and name

Whilst both the type name and number are provided in the MimeMap database and as a translation
with SWI MimeMap_Translate (on page 45), only the number is retained by the module. This allows the
type name to be undefined initially and values to be provided when they are available though the
standard file type naming variables.

Type numbers may take any value from &000 to &FFF, as defined by the standard file typing system.
The special value &1000 is not used by the MimeMap module.

Dot extensions

Dot extensions are preceeded by a period ('.') character when passed in the *MimeMap command and
in the MimeMap file. In the MimeMap file, multiple extensions can be supplied indicating that multiple
extensions are used for a single type.

Mac type names

Mac types are specified in the form: "XXXXxxxx" where XXXX is the filetype and xxxx is the vendor type.
? can be used as a single character wildcard. \? means a literal ?. \t, \v, \n, \r have their usual meanings
(9, 11, 10 and 13 respectively). \DD (where DD describes 2 hexadecimal digits) represents the character
with ASCII code &DD.

Technical details

42

There is a default Mac mapping defined, where "&DDDAcrn" maps to filetype &DDD (for hexadecimal
digits DDD). This vendor name is registered with Apple. Within Mac mappings, the least number of
wildcards is matched if multiple matches are possible.

Mac mappings must be enclosed in double quotes (") when passed to the *MimeMap command, and in
the MimeMap file.

File format

The MimeMap file is split into 5 fields to provide the type mappings database. Entries within the file are
searched in the same order in which they appear, with wildcards matched last. Fields are tab delimited,
and consist of :

<mimetype> <tab> <ro-text> <tab> <ro-hex> <tab> <extensions> <tab>
<mactype>

Value Meaning

mimetype Media type in the form 'major/minor'

major Major component of the media type, or '*' wildcard to match with any major type.

minor Minor component of the media type, or '*' wildcard to match with any minor type.

ro-text Textual form of the 'ro-hex' field for readability purposes

ro-hex Hexadecimal RISC OS type

extensions File extensions, in the form of a period ('.') prefixed, tab separated list of file extensions.

mactype Mac vendor/type string as defined above.

The MimeMap module

43

RISC O
S Program

m
ers Reference M

anuals

System variables

Inet$MimeMappings
Defines the filename of the MimeMap database file

Use

This variable names the file which will be used to provide mappings information for the MimeMap
module. Assigning a value to this variable will cause the MimeMap module to re-parse its contents.

Usually this variable will take the value InetDBase:MimeMap during normal use. When the system
boots, its value will point to a file in ResourceFS which contains a basic file with simple mappings.

Related * commands
*ReadMimeMap (on page 48)

System variables

44

SWI calls

MimeMap_Translate
(SWI &50B00)

Perform translation between type systems

On entry
R0 = Input type format
R1 = Input type, or pointer to buffer containing type data
R2 = Output type format
R3 = Pointer to output type buffer of up to 128 bytes, if required by output format

On exit
R0 - R2 preserved

R3 = Result from conversion, or preserved if output data in buffer

Interrupts
Interrupts are undefined
Fast interrupts are enabled

Processor mode
Processor is in SVC mode

Re-entrancy
SWI is not re-entrant

Use

This SWI is used to access the type mapping database to convert from one type format to another. The
conversion is performed as cleanly as is possible, returning the most relevant match as provided by the
mapping database file.

If no mapping can be performed, an error will be returned.

Related * commands
*MimeMap (on page 47)

The MimeMap module

45

RISC O
S Program

m
ers Reference M

anuals

MimeMap_Configure
(SWI &50B01)

Configure the MimeMap module

On entry
R0 = Configure type :

Value Meaning

0 Re-read MimeMap file

other Reserved

On exit
None

Interrupts
Interrupts are undefined
Fast interrupts are enabled

Processor mode
Processor is in SVC mode

Re-entrancy
SWI is not re-entrant

Use

This SWI is used to configure aspects of MimeMap type conversion. At present, only a single reason
code is provided; that for forcing a re-read of the MimeMap file.

If the reason code is not recognised, an error is returned.

Related * commands
*ReadMimeMap (on page 48)

SWI calls

46

*Commands

*MimeMap
Perform a translation and display the results

Syntax
*MimeMap &<type>
*MimeMap .<extension>
*MimeMap <major>/<minor>
*MimeMap <typename>
*MimeMap "<mactype>"

Parameters
<type> - Hexadecimal value of RISC OS type

<extension> - File extension type

<major> - Major category of media type

<minor> - Minor type of media type

<typename> - Textual form of RISC OS type

<mactype> - Mac type mapping string as used in the configuration file

Use

This command is used to display mappings of types in a human readable manner. It is usually used as a
aid for debugging the mapping of types. If issued with no parameters, it will list all the known types.

Examples
*MimeMap application/octet-stream *MimeMap &1AD

Related SWIs
SWI MimeMap_Translate (on page 45)

The MimeMap module

47

RISC O
S Program

m
ers Reference M

anuals

*ReadMimeMap
This command causes the MimeMap module to re-read the mappings file.

Syntax
*ReadMimeMap

Parameters
None

Use

This command is used to force the MimeMap module to re-read the database and parse it into internal
structures. Although the MimeMap module will automatically read the database if the system variable
changes, if the file is changed the module should be informed through this command.

Examples
*ReadMimeMap

Related system variables
Inet$MimeMappings (on page 44)

*Commands

48

Document information
Maintainer(s): RISCOS Ltd <developer@riscos.com>

History: Revision Date Author Changes
1 ROL Extended from ANT release note

• Added documentation of Mac file type conversion.
2 21 Feb 2003 ROL Finished file format

• The file format is now described by the 'code' element.
3 21 Mar 2003 AMH Fixes

• Previous version didn't compile. This one does.
4 22 Mar 2003 ROL Validation

• Last changes didn't validate at all
Disclaimer: Copyright © Pace Micro Technology plc, 2001.

Portions copyright © RISCOS Ltd, 2001-2004.

Published by RISCOS Limited.

No part of this publication may be reproduced or transmitted, in any form or by any means,
electronic, mechanical, photocopying, recording or otherwise, or stored in any retrieval
system of any nature, without the written permission of the copyright holder and the
publisher, application for which shall be made to the publisher.

Part or all of this document has been worked upon by Andrew Hill of MH Software as part of
the RISC OS Documentation Project.

Those portions are Copyright © MH Software, 2001-2003. They are to be distributed by RISC
OS Ltd. with permission for publication on the select.riscos.com website and Select CD.

The remainder of this work retains the copyrights stated above. No responsibility will be
borne by MH Software for the accuracy of this work, nor for any losses which may result from
it.

The MimeMap module

49

RISC O
S Program

m
ers Reference M

anuals

mailto:developer@riscos.com

17*FWShow Show currently known unauthenticated objects
47*MimeMap Perform a translation and display the results
48*ReadMimeMap This command causes the MimeMap module to re-read the mappings file.
38*ResolverConfig Request that the resolver re-read its configuration

Index (Commands)

50

13Freeway_Enumerate (&47A83) Enumerate objects of a given type.
12Freeway_Read (&47A82) Read attributes of an object.

8Freeway_Register (&47A80) Register or deregister interest in objects of a given Freeway
type.

16Freeway_Serial (&47A85) For internal use only
15Freeway_Status (&47A84) For internal use only
10Freeway_Write (&47A81) Add or remove an object of a given type.
46MimeMap_Configure (&50B01) Configure the MimeMap module
45MimeMap_Translate (&50B00) Perform translation between type systems
37Resolver_CacheControl (&46003) Perform operations on the Resolver cache
36Resolver_GetCache (&46002) For internal use only
34Resolver_GetHost (&46001) Initiate a non-blocking name resolution

Resolver_GetHostByName (&46000)
33

Initiate a non-blocking name resolution

Index (SWIs)

51

Resolver_GetHostByName (&46000)
33

Initiate a non-blocking name resolution

34Resolver_GetHost (&46001) Initiate a non-blocking name resolution
36Resolver_GetCache (&46002) For internal use only
37Resolver_CacheControl (&46003) Perform operations on the Resolver cache

8Freeway_Register (&47A80) Register or deregister interest in objects of a given Freeway
type.

10Freeway_Write (&47A81) Add or remove an object of a given type.
12Freeway_Read (&47A82) Read attributes of an object.
13Freeway_Enumerate (&47A83) Enumerate objects of a given type.
15Freeway_Status (&47A84) For internal use only
16Freeway_Serial (&47A85) For internal use only
45MimeMap_Translate (&50B00) Perform translation between type systems
46MimeMap_Configure (&50B01) Configure the MimeMap module

Index (SWIs by number)

52

7Freeway (&C) State of Freeway objects has changed.

Index (UpCalls)

53

7Freeway (&C) State of Freeway objects has changed.

Index (UpCalls by number)

54

5FreewayStarting (&95) Freeway is starting up
6FreewayTerminating (&96) Freeway is terminating

30InternetVars (&80C41) Notification of variable changes
31InternetVars (&80C41) 0 - DatabaseChanged Change in the location of the internet database
32InternetVars (&80C41) 1 - HostnameChanged Change in the name of this host

Index (Services)

55

5FreewayStarting (&95) Freeway is starting up
6FreewayTerminating (&96) Freeway is terminating

30InternetVars (&80C41) Notification of variable changes
31InternetVars (&80C41) 0 - DatabaseChanged Change in the location of the internet database
32InternetVars (&80C41) 1 - HostnameChanged Change in the name of this host

Index (Services by number)

56

24Inet$Hostname Local name of this host
25Inet$LocalDomain Local domain name
44Inet$MimeMappings Defines the filename of the MimeMap database file
28Inet$ResolverDelay Delay between resolution requests
27Inet$ResolverRetries Number of times that the resolver should re-try resolving
29Inet$ResolverServer Determines whether the DNS relay is active
23Inet$Resolvers Lists the DNS servers that should be queried
26Inet$SearchDomains List of domains to use search hostnames in

Index (SysVars)

57

	RISC OS Networking
	Example manual for ROUGOL

	Contents
	Networking

	RISC OS Programmers Reference ManualsFreeway
	Introduction and Overview
	Technical Details
	Type number
	Object name
	Object descriptor
	Object authentication value
	Refresh interval

	Service calls
	UpCalls
	SWI calls
	*Commands
	Document information
	Initial version

	RISC OS Programmers Reference ManualsResolver
	Introduction and Overview
	Terminology
	Technical Details
	How the Resolver works
	SWI interface
	Host entries
	System variables

	System variables
	Service calls
	SWI calls
	*Commands
	Document information
	Initial version
	Corrected unfinished sentence

	RISC OS Programmers Reference ManualsThe MimeMap module
	Introduction
	Overview
	Using the module

	Technical details
	Type formats
	Type representation
	Media types
	RISC OS type number and name
	Dot extensions
	Mac type names

	File format

	System variables
	SWI calls
	*Commands
	Document information
	Extended from ANT release note
	Finished file format
	Fixes
	Validation

	Index (Commands)
	Index (SWIs)
	Index (SWIs by number)
	Index (UpCalls)
	Index (UpCalls by number)
	Index (Services)
	Index (Services by number)
	Index (SysVars)

