
RISC OS Networking
Example manual for ROUGOL

RISC OS 2 format

www.princexml.com
Prince - Non-commercial License
This document was created with Prince, a great way of getting web content onto paper.

Contents

3Freeway

3Introduction and Overview
4Technical Details
5Service calls
7UpCalls
8SWI calls

14*Commands

16Resolver

16Introduction and Overview
17Terminology
18Technical Details
19System variables
26Service calls
29SWI calls
34*Commands

36MimeMap

36Introduction
37Overview
38Technical details
40System variables
41SWI calls
43*Commands

Networking

46Commands

47SWIs

48... by number

49UpCalls

50... by number

51Services

52... by number

53SysVars

Indexes

Selected chapters for Networking extracted as a demonstration of the RISC OS
PRMs using PRM-in-XML.

2 :

Freeway

Freeway is a narrow software layer which maintains information about the location
of objects on a network, in a decentralised fashion.

Objects are classified according to Freeway Type. At the Freeway level the
attributes of an object are its name, location, an optional descriptor and an optional
authentication value. All other characteristics are undefined.

Freeway itself only knows about the IP location of objects on the network. It is not
concerned with how those objects may be accessed, or with any specific access
control mechanisms. These areas are handled by higher-level type-specific
application software, as needed. Each type will have a 'controlling' application.

Freeway types are created by Acorn as required : third parties may request a type
via the usual defined channel for allocation requests. Each type has a unique
identifier : for example, if there is a need for software to enable 'Bach partitas' to be
shared across a network, then an available Freeway type number will be allocated
by Acorn - e.g. 97=BachPartitas - and then the controlling application will be
written to 'share' Bach partitas - whatever that means.

Introduction and
Overview

Freeway: Introduction and Overview 3

This is a 16-bit integer identifying a Freeway type. The following type numbers are
allocated to Acorn Access+. (Informal names with no significance in software will
also be allocated, for easier human reference)

Type Informal name

1 Discs

2 Printers

5 Hosts

In Acorn Access, ShareFS is the controlling application for types Discs and Hosts,
and !Printers is the controlling application for type Printers.

This is the name of an object.

An object name is unique within the set of objects of the same type within a site.
Object names are terminated by a control character (and will return a terminator
of zero on output), case independent, alphanumeric strings, created by users or
application software. Maximum length is 64 bytes, including the terminator.

This provides extra information about the object.

Its format is undefined at this level - it has significance to higher-level application
software. Object descriptors are arrays of bytes of any value, maximum length 255.

In Acorn Access+ the descriptor for type Discs indicates whether a disc is shared
protected or unprotected, or as a CDROM or subdirectory, and visible or invisible
to other desktop users.

The descriptor for type Printers is a 'Printer Type' string.

The descriptor for type Hosts is null.

Objects are either authenticated or unauthenticated. Authenticated objects require
an authentication value to be provided before their attributes are made visible. An
authentication value is a 32 bit integer. The authentication value of zero is reserved
and should not be used.

The Freeway software in each computer will periodically re-notify other
computers about unauthenticated objects which are held by the local machine, so
that they know that the objects continue to be accessible. This permits, for
example, other machines to know when a computer holding Freeway objects has
been powered down. The renotification period is called the "refresh interval", and is
determined by the Freeway software and is typically 30 seconds.

Technical Details

Type number

Object name

Object descriptor

Object authentication
value

Refresh interval

4 Freeway: Technical Details

Service_FreewayStarting
(Service Call &95)

Freeway is starting up

R1 = service call number
R2 = flags :

Bit(s) Meaning

0-31 Reserved, must be 0

R1 preserved

This service is issued when the Freeway module starts up. You may not call any
Freeway SWIs during this service. If you wish to register with the module you
should use a transient callback to do so.

Service_FreewayTerminating (on page 6)

Service calls

On entry

On exit

Use

Related services

Freeway: Service calls 5

Service_FreewayTerminating
(Service Call &96)

Freeway is terminating

R1 = service call number
R2 = flags :

Bit(s) Meaning

0-31 Reserved, must be 0

R1 preserved

This service is issued when the Freeway module is killed or shuts down for any
other reason. You may not call any Freeway SWIs during this service.

Service_FreewayStarting (on page 5)

On entry

On exit

Use

Related services

6 Freeway: Service calls

UpCall_Freeway
(UpCall &C)

State of Freeway objects has changed.

R0 = UpCall number
R1 = Reason code :

Value Meaning

0 Object has been added

1 Object has been removed

2 Object attributes have changed

3 Local object deleted by Freeway
R2 = type number
R3 = pointer to object name, 0 terminated
R4 = length of object descriptor
R5 = pointer to object descriptor
R6 = IP address of device which holds or held this object

R0 - R6 preserved

This call warns controlling applications that the named object has been added,
removed or changed. It is also issued when Freeway has detected that the
information held about a locally held object is unreliable, (as a result of possible
temporary name duplication, for example) and has removed it unilaterally. It is
issued on callback, and the contents of the supplied name and descriptor buffers
are guaranteed not to change provided they are read from within the application's
UpCall handler.

SWI Freeway_Write (on page 9)

UpCalls

On entry

On exit

Use

Related SWIs

Freeway: UpCalls 7

Freeway_Register
(SWI &47A80)

Register or deregister interest in objects of a given Freeway type.

R0 = flags :
Bit(s) Meaning

0 0 - register interest

1 - deregister interest

1 0 - interested in unauthenticated objects

1 - interested in authenticated objects

2 0 - R3 not valid

1 - R3 is pointer to type 'name' (<= 15 characters, 0
terminated)

3-31 reserved - must be set to 0
R1 = type number
R2 = authentication value if R0 bit 1 is set, otherwise undefined
R3 = pointer to type 'name' if R0 bit 2 is set, otherwise undefined

R0 - R3 preserved

Interrupts are undefined
Fast interrupts are enabled

Processor is in SVC mode

SWI is not re-entrant

This SWI enables a controlling application to register interest in authenticated or
unauthenticated objects of a particular Freeway type with the local Freeway
software, and also to give a 'name' to that type (this name is of no significance to the
software, it's just for the convenience of the human user). Freeway will hold
information arriving from the network about a remote object only if one or more
registrations of interest have been made locally in that object's type. If the object is
authenticated then at least one of those registrations must have included an
authentication value which matches the object's own. An error is returned if
insufficient free memory exists.

SWI Freeway_Write (on page 9)
SWI Freeway_Read (on page 10)

SWI calls

On entry

On exit

Interrupts

Processor mode

Re-entrancy

Use

Related SWIs

8 Freeway: SWI calls

Freeway_Write
(SWI &47A81)

Add or remove an object of a given type.

R0 = flags :
Bit(s) Meaning

0 0 - add object

1 - remove object

1 1 - object is authenticated

2-31 reserved - must be set to 0
R1 = type number
R2 = pointer to object name, 0 terminated
R3 = length of object descriptor
R4 = pointer to object descriptor, or 0 for null descriptor, or when R0 bit 0 is set
R5 = object authentication value if R0 bit 1 is set, otherwise undefined

R0 - R5 preserved

Interrupts are undefined
Fast interrupts are enabled

Processor is in SVC mode

SWI is not re-entrant

This SWI adds or removes a locally held object of a given type. If the object is
unauthenticated then other computers are notified immediately, otherwise
notification is withheld until a remote computer requests it. An error is returned if
the type number is not known (i.e. if Freeway_Register has not been called with this
type number), or if an object is added and a remote object of the given name and
type already exists, or if an object is removed and no local object of the given name
and type is currently held, or if no memory exists to store information about the
object.

If R0 bit 0 is clear and the object named is already held as a local object, the
object's descriptor and authentication value are updated if they differ from those
passed to the SWI.

N.B.: Controlling applications should be prepared to receive upcall
UpCall_Freeway, reason code object deleted, referring to any object previously
added successfully via SWI Freeway_Write. This is to cover the possibility of
Freeway deciding at any time that the information held about an object is
unreliable and so deciding to remove it unilaterally, for any reason, e.g. if a remote
object is created with the same name as a local object.

SWI Freeway_Read (on page 10)

On entry

On exit

Interrupts

Processor mode

Re-entrancy

Use

Related SWIs

Freeway: SWI calls 9

Freeway_Read
(SWI &47A82)

Read attributes of an object.

R0 = flags :
Bit(s) Meaning

0 1 - authentication value provided

1-31 reserved - must be set to 0
R1 = type number
R2 = pointer to object name, 0 terminated
R3 = length of buffer for object descriptor
R4 = pointer to buffer for object descriptor, or 0 to read descriptor length
R5 = object authentication value if R0 bit 0 is set, otherwise undefined

R0 - R2 preserved
R3 = length of held object descriptor
R4 preserved
R5 = IP address of computer which holds the object

Interrupts are undefined
Fast interrupts are enabled

Processor is in SVC mode

SWI is not re-entrant

This SWI reads information about the attributes of an object. The type number and
object name must be provided. The SWI returns the IP address of the holder, and
optionally the descriptor. The length of a held object descriptor may be read by
setting R4=0 on entry. However in this case there is no guarantee that the object
attributes will not have changed, or that the object will still exist, if the SWI is called
again some time later with the same object name. An error is returned if the type
number is unknown, or the object name is unknown, or if a supplied authentication
value does not match the object's own authentication value, or if a supplied object
descriptor buffer is too short; in this case the actual length is returned in R3.

SWI Freeway_Write (on page 9)

On entry

On exit

Interrupts

Processor mode

Re-entrancy

Use

Related SWIs

10 Freeway: SWI calls

Freeway_Enumerate
(SWI &47A83)

Enumerate objects of a given type.

R0 = flags :
Bit(s) Meaning

0 0 - enumerate unauthenticated objects

1 - enumerate authenticated objects

1-31 reserved - must be set to 0
R1 = type number
R2 = length of buffer for object name
R3 = pointer to buffer for object name, or 0 to read length of name
R4 = length of buffer for object descriptor
R5 = pointer to buffer for object descriptor, or 0 to read descriptor length
R6 undefined
R7 = enumeration context (0 to start)
R8 = object authentication value if R0 bit 0 is set, otherwise undefined

R0 preserved
R1 preserved
R2 = length of held object name, including terminator
R3 preserved
R4 = length of held object descriptor
R5 preserved
R6 = IP address of computer which holds the object
R7 = next enumeration context, or -1 if no more
R8 preserved

Interrupts are undefined
Fast interrupts are enabled

Processor is in SVC mode

SWI is not re-entrant

This SWI allows a controlling application to enumerate currently held
authenticated or unauthenticated objects of a given type, obtaining their names,
location IP addresses, and descriptors if present. If an authentication value is
provided then only those objects whose actual authentication value matches the
supplied value are enumerated. If no authentication value is supplied then only
unauthenticated objects are enumerated. The length of the held object name or
descriptor may be read without filling in buffers by setting R3=0 or R5=0
respectively, on entry. However in this case there is no guarantee that the object
attributes will not have changed, or that the object will still exist, if the SWI is called
again some time later with the same enumeration reference.

If R7 is returned -1 then there were no further known objects of that type - the
object name buffer will not have been filled in, and R6 is undefined.

An error is returned if the type number is unknown, or if a supplied name or
descriptor buffer is too short. In the latter cases the actual name and descriptor
lengths are returned in R2 and R4.

SWI Freeway_Read (on page 10)

On entry

On exit

Interrupts

Processor mode

Re-entrancy

Use

Related SWIs

Freeway: SWI calls 11

Freeway_Status
(SWI &47A84)

This SWI call is for internal use only. You must not use it in your own code.

12 Freeway: SWI calls

Freeway_Serial
(SWI &47A85)

This SWI call is for internal use only. You must not use it in your own code.

Freeway: SWI calls 13

*FWShow
Show currently known unauthenticated objects

*FWShow

None

This command is used to show the names and holder IP addresses of all
unauthenticated objects of all types currently known about by this machine. Local
objects are indicated via a leading asterisk.

*FWShow

SWI Freeway_Enumerate (on page 11)

*Commands

Syntax

Parameters

Use

Examples

Related SWIs

14 Freeway: *Commands

Maintainer(s): RISCOS Ltd <developer@riscos.com>
History: Revision Date Author Changes

1 ROL Initial version
Disclaimer: Copyright © Pace Micro Technology plc, 2001.

Portions copyright © RISCOS Ltd, 2001-2004.

Published by RISCOS Limited.

No part of this publication may be reproduced or transmitted, in any form or by
any means, electronic, mechanical, photocopying, recording or otherwise, or stored
in any retrieval system of any nature, without the written permission of the
copyright holder and the publisher, application for which shall be made to the
publisher.

Document information

Freeway: Document information 15

mailto:developer@riscos.com

Resolver

Internet based applications are required to connect to other hosts throughout the
world. Location of these hosts is via numeric addresses which are determined by
human readable names. The process of converting from names to addresses is
performed by 'Domain Name Servers' (DNS).

Under RISC OS, communication with DNS is performed by the Resolver module.

This chapter describes how the Resolver module is configured to use DNS, and
applications should interact with it.

Introduction and
Overview

16 Resolver: Introduction and Overview

The Resolver module provides shared Internet IP address resolution facilities to
the system.

The Hosts file is the file InetDBase:Hosts. It is used to initialise the local DNS cache
with entries.

DNS servers are queried by the Resolver and the results are cached.

Application is used within this chapter as a description of the Resolver querant, but
this may also apply to Modules.

Terminology

Resolver: Terminology 17

The Resolver functions as follows :

• The user configures the resolver through serial variables. Usually this is
performed on machine start up from pre-set values.

• When an address is requested the application requests a lookup from the
Resolver.

• The Resolver module checks its cached entries and if one exists that matches
the request, it is returned immediately. Otherwise a request is sent to the
configured DNS servers.

• The application continues to request a lookup from the Resolver. The
Resolver continues to try to look up the request until it times out.

• If the request to the DNS servers is satisfied, or a failure is returned, the result
is returned to the application.

• If the request is not responded to within a period, a failure is returned to the
application.

The module provides two interfaces for resolving addresses :

• SWI Resolver_GetHostByName (on page 29) to provide an equivilent operation
to that expected by unix applications. This SWI will not return until a result
or failure has been determined.

• SWI Resolver_GetHost (on page 30) to provide a multi-tasking version of
GetHostByName. This SWI returns a notification that the resolve is 'in
progress' and should be polled until a result has been received.

In addition, there is a means for controlling the cache :

• SWI Resolver_CacheControl (on page 33) can be used to perform various
operations on the cache.

All results are returned in the form of NetBSD standard 'hostent' structures. These
structures should be considered to be read only by the application.

A hostent has the following structure :

Offset Contents

0 Pointer to host name

4 Pointer to 0 terminated list of pointers to aliases for this host

8 Address type (usually AF_INET)

12 Address length (4 for AF_INET)

16 Pointer to 0 terminated list of addresses

The Resolver module uses a number of system variables for its configuration.
These determine how and where it resolves Internet addresses from. In general,
these variables are initialised during machine startup. They may be modified by the
user once the Internet stack has started. They will be read when the re-configure
call is made to the Resolver, either via the Resolver_CacheControl SWI or by the
*ResolverConfig command. In addition, they will be re-read whenever the
InetDBaseChanged service is issued.

Technical Details

How the Resolver works

SWI interface

Host entries

System variables

18 Resolver: Technical Details

Inet$Resolvers
Lists the DNS servers that should be queried

This variable lists the DNS servers that will be queried during resolution requestes.
It consists of a space separated list of dotted IP addresses. Up to three addresses
may be supplied. Addresses will be queried in the order supplied.

None

System variables

Use

Related APIs

Resolver: System variables 19

Inet$Hostname
Local name of this host

This variable gives the local name of this host. Attempts to set this variable to a
fully qualified hostname will result in it and Inet$LocalDomain being set to the
correct values.

Inet$LocalDomain (on page 21)

Use

Related system variables

20 Resolver: System variables

Inet$LocalDomain
Local domain name

This variable gives the local domain name for the network this host is connected
to. Together with Inet$Hostname, this provides the name of this host on a
network. It may be that this host name is not visible from certain networks due to
firewalls, proxying and other network-specific issues.

Inet$Hostname (on page 20)

Use

Related system variables

Resolver: System variables 21

Inet$SearchDomains
List of domains to use search hostnames in

This variable describes the domains which should be appended to failed host
lookups in an attempt to resolve them.

After being modified, the Resolver module must be notified by requesting it re-read
its configuration.

*ResolverConfig (on page 34)

SWI Resolver_CacheControl (on page 33)

Inet$LocalDomain (on page 21)

Use

Related * commands

Related SWIs

Related system variables

22 Resolver: System variables

Inet$ResolverRetries
Number of times that the resolver should re-try resolving

This variable should be set to the number of retries that the resolve should made.
During resolution, the Resolver may get no response to its requests. This may be
due to network bandwidth limitations, or a busy server. The number of retries may
be configured to allow for greater numbers of retries if necessary.

After being modified, the Resolver module must be notified by requesting it re-read
its configuration.

*ResolverConfig (on page 34)

SWI Resolver_CacheControl (on page 33)

Inet$ResolverDelay (on page 24)

Use

Related * commands

Related SWIs

Related system variables

Resolver: System variables 23

Inet$ResolverDelay
Delay between resolution requests

This variable should be set to the number of seconds that should be waited
between resolution requests. During resolution, the Resolver may get no response
to its requests. This may be due to network bandwidth limitations, or a busy server.
The delay between retries may be configured to allow for faster requests (if the
server is known to accept such requests - consult the server operators) or longer
delays if the server is known to be under load.

After being modified, the Resolver module must be notified by requesting it re-read
its configuration.

*ResolverConfig (on page 34)

SWI Resolver_CacheControl (on page 33)

Inet$ResolverRetries (on page 23)

Use

Related * commands

Related SWIs

Related system variables

24 Resolver: System variables

Inet$ResolverServer
Determines whether the DNS relay is active

This variable should be set to '1' to configure the DNS relay to be active, or '0' to
deactivate it.

After being modified, the Resolver module must be notified by requesting it re-read
its configuration.

*ResolverConfig (on page 34)

SWI Resolver_CacheControl (on page 33)

Use

Related * commands

Related SWIs

Resolver: System variables 25

Service_InternetVars
(Service Call &80C41)

Notification of variable changes

R0 = reason code :
Value Meaning

0 Service_InternetVars 0 (on page 27)

1 Service_InternetVars 1 (on page 28)

other Reserved
R1 = service call number

R0 preserved
R1 preserved

This service is issued by the Resolver module when certain variables that it
monitors change. Other components may use the service as an indication that their
configuration has changed.

None

Service calls

On entry

On exit

Use

Related APIs

26 Resolver: Service calls

Service_InternetVars 0
(Service Call &80C41)

Change in the location of the internet database

R0 = 0 (reason code)
R1 = service call number

R0 preserved
R1 preserved

This service is issued by the Resolver module when InetDBase$Path is changed.
Components which hold resources in the database should re-read those resources.

Service_InternetVars (on page 26)

On entry

On exit

Use

Related services

Resolver: Service calls 27

Service_InternetVars 1
(Service Call &80C41)

Change in the name of this host

R0 = 1 (reason code)
R1 = service call number

R0 preserved
R1 preserved

This service is issued by the Resolver module when Inet$Hostname (on page 20) is
changed. Components which use the hostname to refer to objects should update
their concept of the local name. If complex operations are required, clients should
schedule a transient callback.

Service_InternetVars (on page 26)

Inet$Hostname (on page 20)

On entry

On exit

Use

Related services

Related system variables

28 Resolver: Service calls

Resolver_GetHostByName
(SWI &46000)

Initiate a non-blocking name resolution

R1 = Pointer to host name string

R0 = Internet error number, indicating the state of the lookup :
Value Meaning

0 Resolve successful

-1 Host was not found

-2 Remove request failure, eg no response from servers

36 Resolve in progress

other Standard internet error numbers
R1 = Pointer to 'hostent' structure if successful, or 0 if failed

Interrupts are undefined
Fast interrupts are enabled

Processor is in SVC mode

SWI is not re-entrant

This SWI is provided primarily for backwards compatibility, since new network
applications can use the more flexible SWI Resolver_GetHost (on page 30).

The main use of this SWI is by the simple ports of unix applications using the
gethostbyname() function call.

Although this SWI is marked as non-reentrant, it is expected that this SWI be
preempted by OS_UpCall 6 when used in a TaskWindow. This is a safe operation.

SWI Resolver_GetHost (on page 30)

SWI calls

On entry

On exit

Interrupts

Processor mode

Re-entrancy

Use

Related SWIs

Resolver: SWI calls 29

Resolver_GetHost
(SWI &46001)

Initiate a non-blocking name resolution

R1 = Pointer to host name string

R0 = Internet error number, indicating the state of the lookup :
Value Meaning

0 Resolve successful

-1 Host was not found

-2 Remove request failure, eg no response from servers

36 Resolve in progress

other Standard internet error numbers
R1 = Pointer to 'hostent' structure if successful, or 0 if failed

Interrupts are undefined
Fast interrupts are enabled

Processor is in SVC mode

SWI is not re-entrant

This SWI provides a DNS resolution facility that runs in the background (unlike
SWI Resolver_GetHostByName (on page 29)). Applications must poll the Resolver
module for the state of the resolution.

If the hostname is a valid cache item, or present in the hosts file on disc, it is
returned immediately in R1, with R0 set to 0.

If the hostname is a cache item, marked as failed, then R1 is set to 0 and R0 is
either -1 (host not found), or -2 (remote failure. eg, configured resolver didn't
respond).

If the hostname is a cache item, marked as pending, then R1 is set to 0 and R0 is
EINPROGRESS (36 decimal). Items are marked as pending when a remote resolver
lookup is in progress. The calling program is expected to periodically call
Resolver_GetHost until a valid hostent is returned, or an error condition occurs.

Because name lookups can take anything up to 20 seconds or so, it is important to
be able to give feedback to the user on the status of the lookup, as well as giving the
foreground application time to perform other tasks.

Cache sweeps occur periodically - pending items are marked as failed (remote
failure) after a short period, failed items are removed after a longer period, and
valid items are removed after 24 hours.

If there is a configuration error (such as Inet$Resolvers (on page 19) not being set),
then a RISC OS error block pointer is returned in R0, and the V flag is set on exit.

The calling program might run something like:

REM 'EINPROGRESS' error number is 36 decimal
REPEAT

SYS "Resolver_GetHost","host.net" TO status,hostent;flags
error = (flags AND 1) == 1
REM Perhaps inform user of the state of this lookup

UNTIL (error) OR (status != EINPROGRESS)
REM hostent is a valid pointer, or 0

On entry

On exit

Interrupts

Processor mode

Re-entrancy

Use

Examples

30 Resolver: SWI calls

SWI Resolver_GetHostByName (on page 29)Related SWIs

Resolver: SWI calls 31

Resolver_GetCache
(SWI &46002)

This SWI call is for internal use only. You must not use it in your own code.

32 Resolver: SWI calls

Resolver_CacheControl
(SWI &46003)

Perform operations on the Resolver cache

R0 = Reason code :
Value Meaning

0 Flush cache of failed lookups

1 Flush cache of all items

2 Flush cache of hosts file items

3 Re-read configuration

8 Disable caching of failed lookups

9 Enable caching of failed lookups

other Reserved

R0 preserved

Interrupts are undefined
Fast interrupts are enabled

Processor is in SVC mode

SWI is not re-entrant

This SWI is provided to allow a calling application to control the Resolver cache in
a limited way. Currently, the only reason codes supported are to force flushes of
certain cache entries, and dis(abling) of the caching of lookups that fail.

Caching of lookup failures is disabled by default. You might wish to enable the
caching of lookup failures if you are sure that any failures are genuine bad host
errors and not due to packet loss, remote server timeouts, etc.

*ResolverConfig (on page 34)

On entry

On exit

Interrupts

Processor mode

Re-entrancy

Use

Related * commands

Resolver: SWI calls 33

*ResolverConfig
Request that the resolver re-read its configuration

*ResolverConfig

None

This command is used to request that the Resolver re-read the system variables for
configuration.

*ResolverConfig

SWI Resolver_CacheControl (on page 33)

*Commands

Syntax

Parameters

Use

Examples

Related SWIs

34 Resolver: *Commands

Maintainer(s): RISCOS Ltd <developer@riscos.com>
History: Revision Date Author Changes

1 ROL Initial version
2 22 Jan 2003 ROL Corrected unfinished sentence

• Documentation for Service_InternetVars had
an unfinished sentence about clients using it.

Disclaimer: Copyright © Pace Micro Technology plc, 2001.

Portions copyright © RISCOS Ltd, 2001-2004.

Published by RISCOS Limited.

No part of this publication may be reproduced or transmitted, in any form or by
any means, electronic, mechanical, photocopying, recording or otherwise, or stored
in any retrieval system of any nature, without the written permission of the
copyright holder and the publisher, application for which shall be made to the
publisher.

Document information

Resolver: Document information 35

mailto:developer@riscos.com

The MimeMap module

In order to determine the operations which can be performed on data, a system of
'typing' is used. On different operating systems and environments, different typing
systems are employed:

• Under RISC OS, the typing system is known as 'file types' and is determined
by numeric identifiers (the filetype of an object) in strict range (0-4095).

• Under DOS and Windows-like systems, the type system is known as an 'file
extension' (sometimes known as a 'dot extension') and is determined by a
string - traditionally of three characters - appended to the filename.

• Under unix-like systems, the type system varies but most commonly a
similar system to that employed by DOS and Windows is used, or a system
based on the content of the file.

• On Apple machines, the type is a fixed length binary identifier (8 bytes), split
into two fields (4 bytes each) - the vendor identifier and the file type.

With this diverse selection of type systems in use and in order to try to standardise
the manner in which such types are identified, a system of 'media types' (also
known as the 'content type') was developed. This is colloqially known as the 'MIME
type', from its use in the most widespread use of its application, Multipurpose
Internet Mail Extensions. This media type categorises the data by category,
providing a number of general categories into which data falls (for example, text or
video).

The MimeMap module provides a central service for mapping between most of the
types available. Of those described above, the MimeMap module does not presently
cater for file identification by its contents.

Introduction

36 The MimeMap module: Introduction

When the module is initialised (either on being loaded, or during boot up) it reads
the file Inet$MimeMappings (on page 40) and stores the parsed file internally. If the
system variable is changed, or the module is explicitly requested, the old version
will be discarded and the file reparsed.

The MimeMap module can handle 5 different file typing schemes:

• RISC OS file type by number, eg &FFF
• RISC OS file type by name, eg Text
• Media type string, eg text/plain
• File extension string, eg .txt
• Mac type/creator pair, eg "ttxtTEXT"

Any type can be converted to any other type by the module should such a mapping
exist in the file. Dependant on the settings in the MimeMap configuration, certain
conversions may not be possible. For some of the conversions, wildcards (fields
identifying multiple potential matches) may be available.

In order to ensure that type conversion is performed in a consistent and
maintainable manner, it is recommended that type conversions are - whereever
possible - performed through the MimeMap module. Typical applications which
would require translations to be performed would be network file transfers (for
example remote filing systems, FTP or HTTP transfers), non-native hardware
transfers (for example CD-ROM data, floppy discs), and collated file processing (for
example MIME format messages such as email).

As supplied, the RISC OS filing systems DOSFS and CDFS support the use of the
MimeMap module.

Overview

Using the module

The MimeMap module: Overview 37

Because the types supported by the MimeMap module are represented in different
ways, a 'type format' is used to distinguish between each of the types in SWI calls.

Value Name Meaning

0 MMM_TYPE_RISCOS RISC OS file type passed as an 32 bit
number

1 MMM_TYPE_RISCOS_STRING RISC OS file type passed as a pointer to a
zero terminated string

2 MMM_TYPE_MIME MIME content type passed as a pointer
to a zero terminated string

3 MMM_TYPE_DOT_EXTN File extension (without the preceeding
period) as a pointer to a zero terminated
string

4 MMM_TYPE_MAC Mac type as a pointer to a 8 byte block

The types listed above are represented textually within the MimeMap database file
and as parameters to *MimeMap (on page 43). The following sections describe each
of the types as used in these locations.

Media types

Media types are supplied in the form 'major/minor'. The format and meaning is
defined in RFCs 2045-2049 (Request For Comments, the main repository of
internet standards) and a database of registered media types is maintained by
IANA (Internet Assigned Numbers Authority).

RISC OS type number and name

Whilst both the type name and number are provided in the MimeMap database
and as a translation with SWI MimeMap_Translate (on page 41), only the number is
retained by the module. This allows the type name to be undefined initially and
values to be provided when they are available though the standard file type naming
variables.

Type numbers may take any value from &000 to &FFF, as defined by the standard
file typing system. The special value &1000 is not used by the MimeMap module.

Dot extensions

Dot extensions are preceeded by a period ('.') character when passed in the
*MimeMap command and in the MimeMap file. In the MimeMap file, multiple
extensions can be supplied indicating that multiple extensions are used for a single
type.

Mac type names

Mac types are specified in the form: "XXXXxxxx" where XXXX is the filetype and
xxxx is the vendor type. ? can be used as a single character wildcard. \? means a
literal ?. \t, \v, \n, \r have their usual meanings (9, 11, 10 and 13 respectively). \DD
(where DD describes 2 hexadecimal digits) represents the character with ASCII
code &DD.

Technical details

Type formats

Type representation

38 The MimeMap module: Technical details

There is a default Mac mapping defined, where "&DDDAcrn" maps to filetype
&DDD (for hexadecimal digits DDD). This vendor name is registered with Apple.
Within Mac mappings, the least number of wildcards is matched if multiple
matches are possible.

Mac mappings must be enclosed in double quotes (") when passed to the
*MimeMap command, and in the MimeMap file.

The MimeMap file is split into 5 fields to provide the type mappings database.
Entries within the file are searched in the same order in which they appear, with
wildcards matched last. Fields are tab delimited, and consist of :

<mimetype> <tab> <ro-text> <tab> <ro-hex> <tab> <extensions>
<tab> <mactype>

Value Meaning

mimetype Media type in the form 'major/minor'

major Major component of the media type, or '*' wildcard to match with
any major type.

minor Minor component of the media type, or '*' wildcard to match with
any minor type.

ro-text Textual form of the 'ro-hex' field for readability purposes

ro-hex Hexadecimal RISC OS type

extensions File extensions, in the form of a period ('.') prefixed, tab separated list
of file extensions.

mactype Mac vendor/type string as defined above.

File format

The MimeMap module: Technical details 39

Inet$MimeMappings
Defines the filename of the MimeMap database file

This variable names the file which will be used to provide mappings information
for the MimeMap module. Assigning a value to this variable will cause the
MimeMap module to re-parse its contents.

Usually this variable will take the value InetDBase:MimeMap during normal use.
When the system boots, its value will point to a file in ResourceFS which contains a
basic file with simple mappings.

*ReadMimeMap (on page 44)

System variables

Use

Related * commands

40 The MimeMap module: System variables

MimeMap_Translate
(SWI &50B00)

Perform translation between type systems

R0 = Input type format
R1 = Input type, or pointer to buffer containing type data
R2 = Output type format
R3 = Pointer to output type buffer of up to 128 bytes, if required by output format

R0 - R2 preserved
R3 = Result from conversion, or preserved if output data in buffer

Interrupts are undefined
Fast interrupts are enabled

Processor is in SVC mode

SWI is not re-entrant

This SWI is used to access the type mapping database to convert from one type
format to another. The conversion is performed as cleanly as is possible, returning
the most relevant match as provided by the mapping database file.

If no mapping can be performed, an error will be returned.

*MimeMap (on page 43)

SWI calls

On entry

On exit

Interrupts

Processor mode

Re-entrancy

Use

Related * commands

The MimeMap module: SWI calls 41

MimeMap_Configure
(SWI &50B01)

Configure the MimeMap module

R0 = Configure type :
Value Meaning

0 Re-read MimeMap file

other Reserved

None

Interrupts are undefined
Fast interrupts are enabled

Processor is in SVC mode

SWI is not re-entrant

This SWI is used to configure aspects of MimeMap type conversion. At present,
only a single reason code is provided; that for forcing a re-read of the MimeMap
file.

If the reason code is not recognised, an error is returned.

*ReadMimeMap (on page 44)

On entry

On exit

Interrupts

Processor mode

Re-entrancy

Use

Related * commands

42 The MimeMap module: SWI calls

*MimeMap
Perform a translation and display the results

*MimeMap &<type>
*MimeMap .<extension>
*MimeMap <major>/<minor>
*MimeMap <typename>
*MimeMap "<mactype>"

<type> - Hexadecimal value of RISC OS type

<extension> - File extension type

<major> - Major category of media type

<minor> - Minor type of media type

<typename> - Textual form of RISC OS type

<mactype> - Mac type mapping string as used in the configuration file

This command is used to display mappings of types in a human readable manner.
It is usually used as a aid for debugging the mapping of types. If issued with no
parameters, it will list all the known types.

*MimeMap application/octet-stream *MimeMap &1AD

SWI MimeMap_Translate (on page 41)

*Commands

Syntax

Parameters

Use

Examples

Related SWIs

The MimeMap module: *Commands 43

*ReadMimeMap
This command causes the MimeMap module to re-read the mappings file.

*ReadMimeMap

None

This command is used to force the MimeMap module to re-read the database and
parse it into internal structures. Although the MimeMap module will automatically
read the database if the system variable changes, if the file is changed the module
should be informed through this command.

*ReadMimeMap

Inet$MimeMappings (on page 40)

Syntax

Parameters

Use

Examples

Related system variables

44 The MimeMap module: *Commands

Maintainer(s): RISCOS Ltd <developer@riscos.com>
History: Revision Date Author Changes

1 ROL Extended from ANT release note
• Added documentation of Mac file type

conversion.
2 21 Feb 2003 ROL Finished file format

• The file format is now described by the 'code'
element.

3 21 Mar 2003 AMH Fixes
• Previous version didn't compile. This one

does.
4 22 Mar 2003 ROL Validation

• Last changes didn't validate at all
Disclaimer: Copyright © Pace Micro Technology plc, 2001.

Portions copyright © RISCOS Ltd, 2001-2004.

Published by RISCOS Limited.

No part of this publication may be reproduced or transmitted, in any form or by
any means, electronic, mechanical, photocopying, recording or otherwise, or stored
in any retrieval system of any nature, without the written permission of the
copyright holder and the publisher, application for which shall be made to the
publisher.

Part or all of this document has been worked upon by Andrew Hill of MH Software
as part of the RISC OS Documentation Project.

Those portions are Copyright © MH Software, 2001-2003. They are to be
distributed by RISC OS Ltd. with permission for publication on the
select.riscos.com website and Select CD.

The remainder of this work retains the copyrights stated above. No responsibility
will be borne by MH Software for the accuracy of this work, nor for any losses
which may result from it.

Document information

The MimeMap module: Document information 45

mailto:developer@riscos.com

14*FWShow Show currently known unauthenticated objects
43*MimeMap Perform a translation and display the results
44*ReadMimeMap This command causes the MimeMap module to re-read the mappings file.
34*ResolverConfig Request that the resolver re-read its configuration

Index (Commands)

46 :

11Freeway_Enumerate (&47A83) Enumerate objects of a given type.
10Freeway_Read (&47A82) Read attributes of an object.

8Freeway_Register (&47A80) Register or deregister interest in objects of a given Freeway
type.

13Freeway_Serial (&47A85) For internal use only
12Freeway_Status (&47A84) For internal use only
9Freeway_Write (&47A81) Add or remove an object of a given type.

42MimeMap_Configure (&50B01) Configure the MimeMap module
41MimeMap_Translate (&50B00) Perform translation between type systems
33Resolver_CacheControl (&46003) Perform operations on the Resolver cache
32Resolver_GetCache (&46002) For internal use only
30Resolver_GetHost (&46001) Initiate a non-blocking name resolution

Resolver_GetHostByName (&46000)
29

Initiate a non-blocking name resolution

Index (SWIs)

: 47

Resolver_GetHostByName (&46000)
29

Initiate a non-blocking name resolution

30Resolver_GetHost (&46001) Initiate a non-blocking name resolution
32Resolver_GetCache (&46002) For internal use only
33Resolver_CacheControl (&46003) Perform operations on the Resolver cache

8Freeway_Register (&47A80) Register or deregister interest in objects of a given Freeway
type.

9Freeway_Write (&47A81) Add or remove an object of a given type.
10Freeway_Read (&47A82) Read attributes of an object.
11Freeway_Enumerate (&47A83) Enumerate objects of a given type.
12Freeway_Status (&47A84) For internal use only
13Freeway_Serial (&47A85) For internal use only
41MimeMap_Translate (&50B00) Perform translation between type systems
42MimeMap_Configure (&50B01) Configure the MimeMap module

Index (SWIs by number)

48 :

7Freeway (&C) State of Freeway objects has changed.

Index (UpCalls)

: 49

7Freeway (&C) State of Freeway objects has changed.

Index (UpCalls by number)

50 :

5FreewayStarting (&95) Freeway is starting up
6FreewayTerminating (&96) Freeway is terminating

26InternetVars (&80C41) Notification of variable changes
27InternetVars (&80C41) 0 - DatabaseChanged Change in the location of the internet database
28InternetVars (&80C41) 1 - HostnameChanged Change in the name of this host

Index (Services)

: 51

5FreewayStarting (&95) Freeway is starting up
6FreewayTerminating (&96) Freeway is terminating

26InternetVars (&80C41) Notification of variable changes
27InternetVars (&80C41) 0 - DatabaseChanged Change in the location of the internet database
28InternetVars (&80C41) 1 - HostnameChanged Change in the name of this host

Index (Services by number)

52 :

20Inet$Hostname Local name of this host
21Inet$LocalDomain Local domain name
40Inet$MimeMappings Defines the filename of the MimeMap database file
24Inet$ResolverDelay Delay between resolution requests
23Inet$ResolverRetries Number of times that the resolver should re-try resolving
25Inet$ResolverServer Determines whether the DNS relay is active
19Inet$Resolvers Lists the DNS servers that should be queried
22Inet$SearchDomains List of domains to use search hostnames in

Index (SysVars)

: 53

	RISC OS Networking
	Example manual for ROUGOL
	RISC OS 2 format

	Contents
	Networking

	RISC OS Programmers Reference ManualsFreeway
	Introduction and Overview
	Technical Details
	Type number
	Object name
	Object descriptor
	Object authentication value
	Refresh interval

	Service calls
	UpCalls
	SWI calls
	*Commands
	Initial version

	Document information

	RISC OS Programmers Reference ManualsResolver
	Introduction and Overview
	Terminology
	Technical Details
	How the Resolver works
	SWI interface
	Host entries
	System variables

	System variables
	Service calls
	SWI calls
	*Commands
	Initial version
	Corrected unfinished sentence

	Document information

	RISC OS Programmers Reference ManualsThe MimeMap module
	Introduction
	Overview
	Using the module
	Media types
	RISC OS type number and name
	Dot extensions
	Mac type names

	Technical details
	Type formats
	Type representation
	File format

	System variables
	SWI calls
	*Commands
	Extended from ANT release note
	Finished file format
	Fixes
	Validation

	Document information

	Index (Commands)
	Index (SWIs)
	Index (SWIs by number)
	Index (UpCalls)
	Index (UpCalls by number)
	Index (Services)
	Index (Services by number)
	Index (SysVars)

