PRM-in-XML style gallery

Introduction

This document is intended to show some examples of the different styles of the Acorn
manuals and some presentations using the PRM-in-XML formatted content. The
content has been taken from scanned PDFs, for the original manuals, and the HTML
and PDF generated by experimental versions of the PRM-in-XML. That is to say, it's
not perfect, but it demonstrates some of the flexibility.

Example pages

To provide examples of the formatting of content, 3 sample pages have been selected
from the manuals:

. The contents page
. The start of the introdution to RISC OS chapter
e The OS_Claim SWI definition.

These pages demonstrate many of the features of the manual. They should be easy to
compare between the different versions.

Acorn manuals

The Acorn manuals that are being examined here cover a few years of development,
during which time Acorn refined the style of the manuals considerably. The manuals
which will be shown are:

. RISC OS 2 reference manual
. C release 4 reference manaul
. RISC OS 3 reference manual
. RISC OS 3 reference manual volume 5a

Other manuals exist within the timeline, with varying features, but these are most
relevant to the intended use of the PRM-in-XML system.

PRM-in-XML formats

PRM-in-XML is flexible in how it can generate content, but the examples here will
concentrate solely on the HTML 5/CSS format. This will vary only the CSS used within
the content. Much greater flexibility is afforded by being able to configure the CSS as
required but here only limited canned variants of the standard CSS template are being

www.princexml.com
Prince - Non-commercial License
This document was created with Prince, a great way of getting web content onto paper.

Introduction

shown.

In addition to the HTML, the same content is passed to PrinceXML for conversion to a
PDF. This is done without modification to the intermediate files. Other conversion
solutions exist and could be used with the paged media CSS.

Some of the example content is incomplete - the images have some bad lines - and on
some pages the contents and images have not been styled properly. These are artifacts
of incomplete stylesheets, which can be addressed in time.

The PRM-in-XML tool has a configuration which allows for layering of CSS snippets
on top of a base stylesheet. This configuration is used to change the presentation of the
content. The variants which are available at the present time are:

Variant
prm
acornfs

prm-ro2

numbered-
sections

body-
novarese
body-
fraunces

webfont-
fraunces

heading-
raleway

webfont-
raleway

large-bullets

drop-
character
no-edge-
index

Meaning
Closer to the RISC OS 3 PRMs for paged media and screen rendering.
Acorn Functional Specification style.

Closer to the RISC OS 2 PRMs for paged media. Not complete for
screen rendering.

Apply numbers to the sections on the page.

Change body font to ITC Novarese (requires local installation of this
commercial font).

Change body font to Fraunces (requires local installation of this freely
available Google font).

Download the Fraunces font as required. Use in conjunction with
'body-fraunces'.

Change heading font to Raleway (requires local installation of this
freely available Google font).

Download the Raleway font as required. Use in conjunction with
'heading-raleway'.

Apply larger bullets to lists. This is closer in style to the reference
manuals.

Apply a drop character to the first letter of the first paragaph.

Remove the grey region from the right pages.

For reference, this document was generated with the standard settings, but an extra CSS
file was added to give the images a rounded border.

riscos-prminxml -p css-file=extra.css -f html5 gallery.xml

https://princexml.com/#link_princexml

PRM-in-XML style gallery

Acorn: RISC OS 2 manuals

The RISC OS 2 manuals had some distinctive features which make it stand out from the
later manuals. It is notable that these manuals use the Novarese font which was retained
for later publications.

Headings are restricted to the left of the page. Content is on the right.

The whole manual uses a vertical dividing line to sepatate headings from the
content.

Chapter and sections are shown in the footers, together with the page number.
Page numbers in the contents page line up vertically.

An edge index is not used.

Compare this to the SunOS manuals of the same period.

Because of this separation of the content, there is a lot of space wasted on many pages.
However, finding sections in the API definition pages is a lot easier. In the later versions
of the manuals this left indent is still present (although not as large).

http://www.bitsavers.org/pdf/sun/sunos/4.1/800-3802-10A_SunOS_4.1_Release_Manual_199003.pdf#link_sunos_manuals

Acorn: RISC OS 2 manuals

Example pages

Contents
About this manual
Part 1: Introduction Anintroduction o RISCOS 3
ARM Hardware v
An introduction to SWis 21
* Commands and the CLI 31
Generating and handling errors 37
OS_Byte L 43 In
OS_Word 51 ihié
Software vectors 55 volume
Hardware vectors 85
Interrupts and handling them g
Events 113
Buffers 125
Communications within RISC OS 135
Part 2: The kernel Character output 149
VDU drivers 207
Sprites 379
Character input 461
Time and dare 549
Conversions 579
The CLI 613
Modules 621
Program Environment 729
Memory Management 773
The rest of the kemel 815
Contents
RISC OS 2 contents page

PRM-in-XML style gallery

An introduction to RISC OS

introduction RISC OS is an operating system written by Acorn for its computers. Like any
operating system, it is designed to provide the facilities that you, the
programmer, need to control your computer and to get the most out of the
programs you write for it.

Structure RISCOS has a kernel which conrains the main functions that the operating
system needs. To this are added various modules thar exrend the system,
adding such facilities as filing systems, a window manager, a font manager,
and so on. These are called system extension

=
(7]
(g}
(o}
(7]
it
o
“
Y
3
3
(]
=
n
A
&l
o
=
(]
=]
2]
(]
=
o
=]
c
=)
7]

System
exrension
ules

An introduction to RISC OS: Introduction 3

RISC OS 2 intro chapter

Acorn: RISC OS 2 manuals

SWI Calls

On entry
On exit
Interrupts

Processor mode
Re-entrancy

Use

Related SWis

Related vectors

58

OS_Claim
(swi &1F)

Adds a routine to the list of those that claim a vector

RO = vector number
R1 = address of claiming routine
R2 = value to be passed in R12 when the routine is called

RO - R2 preserved

Interruprs are disabled
Fast interrupts are enabled

Processor is in SVC mode
SW1 cannot be re-entered as it disables IRQ

This call adds the routine whose address is given in R1 to the list of routines
claiming the vecror. This becomes the first toutine to be used when the vector
is called.

Any earlier instances of the same routine are removed. Routines are defined
to be the same if the values passed in RO, R1 and R2 are identical.

The R2 value enables the routine to have a workspace pointer ser up in R12
when it is called. If the routine using the veccor is in a module (as will ofren
be the case), this pointer will usually be the same as its module workspace
pointer.

See below for a list of the vecror numbers.

Example:

MOV RO, #Bytev

ADR R1, MyByteHandler
MOV B2, 10

SWI "0S_Claim®

OS_Release (SWI &20), OS_CallAVecror (SWI &34),
0S_AddToVector (SW1 &47)

All

Snthuars vantare: QU Malls

RISC OS 2 SWI definition

PRM-in-XML style gallery

Acorn: Acorn C Release 4

The Acorn C Release 4 manual is an updated style from that of the RISC OS 2 PRMs,
and has many of the features of the later publications.

The contents page uses grey horizontal bars, but only on some of the headings.
The contents page has page numbers alongside the sections, which isn't as clear.
The contents page not only references the chapter name, but also sections within
the chapter.

The first paragraph of each chapter has a drop initial applied to the first character.

Acorn: Acorn C Release 4

Example pages

Contents

Contents iii

Introduction 1
Installation of Acorn Desktop C 1
The C compiler 2
This user guide 2
Useful references 5

Part 1 - Using the C tools 7

C tools and the DDE 9
Using C tools through Make 9
Editor throwback 10
DDT debugging 13
Using FrontEnd on your programs 18
Making your own linkable libraries 19

cC 21
Getting started with CC 21
C libraries 24
File naming and placing conventions 25
Include file searching 29
The SetUp dialogue box 33
The SetUp menu 35
The Application menu 49
CC output messages 50
Command line interface 51
Worked examples 53

CMHG 59
Starting CMHG 59
The Application menu 60
Example output 61
Command line interface 61

Acorn C Release 4 contents page

PRM-in-XML style gallery

1 Introduction

corn Desktop C is a development environment for producing RISC OS desktop
A applications and relocatable modules written in ANSI C. It consists of a
number of programming tools which are RISC OS desktop applications. These
tools interact in ways designed to help your productivity, forming an extendable
environment integrated by the RISC OS desktop. Acorn Desktop C may be used
with its sister product, Acorn Desktop Assembler, to provide an environment for
mixed C and assembler development.

Acorn Desktop C includes tools to:

2
(7]
(2]
(o}
(7]
0]
o
E
Y
3
3
(]
=
n
A
e
o
=
(]
=]
2]
(]
=
o
=]
c
2
7]

o edit program source and other text files

® search and examine text files

o convert C source and header text between ANSI and Unix dialects

® examine some binary files

e compile and link C programs

e construct relocatable modules entirely from C

e compile and construct programs under the control of makefiles, these being
set up from a simple desktop interface

® squeeze finished program images to occupy less disk space

e construct linkable libraries

o debug RISC OS desktop applications interactively

construct template files for RISC OS desktop applications.

Most of the tools in Acorn Desktop C are also of general use for constructing
applications in other programming languages, and are, for example, supplied with
Acorn Desktop Assembler. These non-language-specific tools are described in the
accompanying Acorn Desklop Development Environment user guide.

Installation of Acorn Desktop C

Installation of Acorn Desktop C is described in the accompanying Acorn Desktop
Development Environment user guide.

Acorn C Release 4 intro chapter

Acorn: RISC OS 3 manuals

Acorn: RISC OS 3 manuals

10

The RISC OS 3 manuals were are probably what most people will remember.

Whilst the earlier manuals appear to be square in their presentation, the RISC OS
3 manuals appear to use a slightly rectangular portrait layout.

The contents page has dropped chapter sections, but now separates the manual
into logical 'parts'.

Page numbers now include a volume number, which is distinct from the 'part' of
the manual.

Parts of the manual are named and use the edge index to locate them.

The drop initial used in the Acorn C Release 4 manual has been dropped.

The style of the API definitions is basically unchanged from the RISC OS 2
manuals, save the headings now taking vertical space, instead of being in the
margin.

Page headers now alternate between the chapter name and the section name.
Page footers only include the page number.

The vertical space used by the headings on the API definitions is arguably a poorer use
of space than in the RISC OS 2 manuals. However, the style is familiar and therefore
this usage is largely expected.

PRM-in-XML style gallery

Example pages

Contents

About this manual [-ix

Part 1 - Introduction 1-1
An introduction to RISC OS -3
ARM Hardware 1-9
An introduction to SWis 1-23
* Commands and the CLI 1-33
Generating and handling errors 1-41
OS_Byte 1-49
0OS_werd 1-59
Software vectors 1-63
Hardware vectors 1111
Interrupts and handling them 1-117
Events 1-145
Buffers 1-161
Communications within RISC OS 1-175

Part 2 - The kernel 1-195
Modules 1-197
Program Environment [-283
Memory Management 1-337
Time and Date 1-399
Conversions 1-441
Extension ROMs 1-485

Part 3 - Kernel input/output 1-487
Character Output 1-489
VDU Drivers 1-527
Sprites 1-745
Character Input 1-83%
The CLI 1-923
The rest of the kernel [-93%

=
(7]
(g}
(o}
(7]
it
o
“
Y
3
3
(]
=
n
A
&l
o
=
(]
=]
2]
(]
=
o
=]
c
=)
7]

RISC OS 3 contents page

1

Acorn: RISC OS 3 manuals

12

Introduction

Structure

N

An introduction to RISC OS

RISC OS is an operaling system written by Acorn for its computers. Like any

operating system, it [s destgned to provide the facilities that you. the programmer,
need to control your computer and to get the most out of the programs you write

for it.

RISC OS has a kernel which contains the main functions that the operating system

needs. To this are added varlous modules that extend the system, adding such

facilities as filing systems, a window manager, a font manager, and so on. These are
called system extension modules:

Figure 1.1 The structure of RISC OS

System
extension
modules

The madules and the kernel provide their facilities very similarly, and there are few
occasions when you will be able to distinguish whether the facilities you are using
are provided by the kernel or by a system extension module. You are most likely to
notice the difference if you wish to alter or replace part of the operating system.

1-3

RISC OS 3 intro chapter

PRM-in-XML style gallery

SWi Calls

SWI Calls
OS_Claim
(swi &1F)

Adds a routine to the list of those that claim a vector

On entry

RO = vector number [see page !-78)
R1 = address of claiming routine that is to be added to vector
R2 = value to be passed in R12 when the routine is called

On exit
RO - R2 preserved

Interrupts

Interrupts are disabled
Fast interrupts are enabled

=
(7]
(g}
(o}
(7]
it
o
“
Y
3
3
(]
=
n
A
&l
o
=
(]
=]
2]
(]
=
o
=]
c
=)
7]

Processor mode
Processer Is in SVC mode

Re-entrancy
SWI cannot be re-entered as it disables IRQ

Use

This call adds the routine whose address is given in R1 to the list of routines
claiming the vector This becomes the first routine to be used when the vector is
called

Any identical earlier instances of the routine are removed. Routines are defined to
be identical if the values passed in RO, R} and R2 are identical.

The R2 value enables the routine to have a workspace pointer set up in R12 when it
is called. [f the routine using the vector is in a module (as will often be the case),
this pointer will usually be the same as its module workspace pointer.

1-66

RISC OS 3 SWI definition

13

Acorn: RISC OS 3 manual, volume 5a

Acorn: RISC OS 3 manual, volume 5a

Volume Sa was largely unchanged in style from the RISC OS 3 manuals, although some
elements have been resized slightly.

Example pages

About this manual

Summary of contents
This manual gives you detailed information on RISC OS 3.5 and RISC OS 3.6, so
that you can write programs to run on Acorn computers that use them. It must be
used in conjunction with the RISC OS 3 Programnter’'s Reference Manual, and is
produced as a replacement for the earlier volume 5 in the set that described
RISC OS 3.5 only. The pages are numbered ‘5a-n’ rather than ‘5-n’ to distinguish
references to the two different versions.
This manual only tells you about the differences between RISC OS 3.1, RISC OS 3.5
and RISC OS 3.6. Many cross references are given between this volume and the
earlier volumes so that you can always refer to the main topic to obtain further
information.

The layout of chapters

We've laid out the information in this manual as consistently as possible, to help
you find what you need. Each chapter covers a specific topic, and in general
includes:

® anIntroduction, so you can tell if the chapter covers the topic you are looking for

® an Overview, to give you a broad picture of the topic and help you to learn it for
the first time

Technical Details, to use for reference once you have read the Overview
SWI calls, described in detail for reference

* Commands, described in detail for reference

Application notes, to help you write programs

Example programs, to illustrate the points made in the chapter, and on which you
can base your own programs.

Appendix C: Errata and omissions for RISC OS 3 PRM

This appendix (on page 5a-659) contains a list of errata and omissions for the
RISC OS 3 Programmer's Reference Manual. We suggest you add to your copy either the
corrections themselves, or a reference to them.

Sa-xi

Volume 5a intro chapter

14

PRM-in-XML style gallery

Sound
2
SWiI calls 2
Sound_Mode 2
(swi &40144) 3
[«
&
Examines and controls the 16 bit sound system’s configuration s
On entry 3
RO = reason code @
Other registers depend on reason code g
o
On exit]
Registers depend on reason code §
Interrupts s
Interrupt status is undefined E
Fast interrupts are enabled 8
o
Processor mode
Processor is in SVC mode
Re-entrancy
Not defined
Use
This call examines and controls the 16 bit sound system’s configuration.
The particular action of Sound_Mode is given by the reason code in RO as follows:
RO Action Page
0 Reads the current sound system configuration 5a-596
1 Enables or disables automatic c ling 5a-597
Related SWis
None
Related vectors
None
5a-595
Volume 5a SWI definition

15

PRM-in-XML: Default configuration

PRM-in-XML: Default configuration

16

The default configuration of PRM-in-XML is intended to take on the style of the
original RISC OS 3 manuals, whilst being able to be used on a variety of desktop sizes.
It is suitable for printing, but has not been tailored specifically for any given device
size.

. The contents page is a similar style to that of the RISC OS 3 contents pages.

. Navigation bars are included on the contents to take you to index pages for each
of the API definition types. Bars are included both at the top and bottom of the
contents page.

. Documentation is organised into named sections, which may be nested arbitrarily.

* Horizontal bars divide sections within the chapters, in addition to the heading
being left aligned.

. Chapters open with a navigation block which links to the sections present within
the chapters.

. Bullets use the standard browser indentation, not the highly condensed form of
the PRM.

. Links are just regular HTML links, which take you to the relevant section. No
page numbers are used.

. The PDF generation uses page breaks to split the chapter content at section
boundaries.

* The PDF has page numbers beside the links on the contents page, in italic to
make them stand out.

. Within the chapter the PDF shows links together with the page number which
contains the content.

Content mistakes here are easy to see, and will be present on all the PRM-in-XML
examples. The SWI examples have excessive whitespace - this is an authoring error.
The image on the intro chapter has a rogue line on the left for some reason.

PRM-in-XML style gallery

Example pages (HTML)

Contents

Comtents Commands ~ SWIs ~ UpCalls Messages Services Vectors SysVars Entrypoints Emors VDUcodes TBoxmethods TBox messages
(umben) (umben (umbe) (wmben (umben (oumbeny (umben) (number)

Overview

About this documentation

An Introduction to RISC OS
Generating and handling errors
Software vectors

Events

Buffers

Memory management

Memory management overview
‘The Heap manager

Dynamic areas

C storage manager

Kernel and environment

Modules

Using modules
Wiiting a module

Input and output

VDU codes

File systems

FileCore disc formats
RAMFS

NetPrint

PipeFS

DeviceF$

CDs and CD-ROMs
FileTypes module

g file systems

Writing a device driver

Obsolete

DeskFS

Networking

Access

Freeway
Resolver

MimeMap

Legacy networking

PRM-in-XML default: contents page

17

PRM-in-XML: Default configuration

18

An introduction to RISC 0OS

Contents

« Introduction
« Structure
acilities

« Altering and extending RISC OS
o Modules
o Vectors
o How RISC OS is written
o How RISC OS is supplied

o The history of RISC OS

Introduction

RISC OS is an operating system, originally written by Acom Computers Ltd for the machines that they built. Since the buyout of Acorn via Element 14 by Pace
Microsystems in 1998, the desktop development has been taken over by RISC OS Ltd. who license development from Pace.

Like any operating system, it is designed to provide the facilities that you, the programmer, need to control your computer and to get the most out of the programs you
write for it.

Structure

RISC OS has kernel which contains the main functions that the operating system needs. To this are added various modules that extend the system, adding such
facilities as filing systems, a window manager, a font manager, and so on. These are called system extension modules:

Kerel System
extension
modules

The structure of RISC OS

The modules and the kernel provide their facilities very similarly, and there are few occasions when you will be able to distinguish whether the facilities you are using are

provided by the kernel or by a system extension moduie. You are most likely to notice the difference if you wish to alter or replace part of the operating system.

Facilities

You can view RISC OS as a collection of routines that provide you with a wide range of facilities. You can get a good overview of the range that is covered from the
carlier contents pages of this manual.

‘This collection of routines can be broadly divided into three levels:

« Those that RISC OS itself uses to automatically perform low-level tasks, such as interrupt handling

+ Those that provide sophisticated and powerful interfaces for you to use from programs, which are known as SoftWare Interrupts, or SWIs for short.

« Those that provide simpler calls that can be used from the command line as well as from programs - these are the * Commands that you are probably already
familiar with.

‘There are chapters later in this part of the manual that cover the above topics in more detail. They are entitled:
« kemelinterrupts.

+ kernel/swis.
+ kernel/CLI.

Alterinn and avitendina RIS NS

PRM-in-XML default: intro chapter

PRM-in-XML style gallery

SWI Calls

‘Adds a routine to the list of those that claim a vector

On entry

RO = vector number (see List of software vectors)
RI = address of claiming routine that is to be added to vector
R2 = value to be passed in R12 when the routine is called

On exit

RO - R2 preserved
Interrupts

Tnterrupts are disabled

Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

SWTis not re-entrant

Use

This call adds the routine whose address is given in R1 to the list of routines claiming the vector. This becomes the first routine to be used when the vector is called.
Any identical earlier instances of the routine are removed. Routines are defined to be identical if the values passed in R0, R1 and R2 are identical.

‘The R2 value enables the routine to have a workspace pointer set up in R12 when it is called. If the routine using the vector is in a module (as will often be the case), this

pointer will usually be the same as its module workspace pointer.

Note that this SWI cannot be re-entered as it disables IRQs.

Examples
MOV Re, #Bytev
ADR R1, MyByteHandler
MOV R2, #0

SWI "0S_Clain”

Related SWis
0S_Release, 0S_CallAVector, 0S_AddToVector

0S_Claim
(SWI &1F)

Removes a routine from the list of those that claim a vector

On entry
RO = vector number (see List of software vectors)
R1 = address of routine that is to be released from vector
R2 = value given in R2 when claimed

On exit
RO - R2 preserved

OS_Release
(SWI &20)

PRM-in-XML default: SWI definition

19

PRM-in-XML: Default configuration

Example pages (PDF)

Contents

Overview

About this documentation 9
An Introduction to RISCOS 17
Generating and handling errors 24

Software vectors 36
Events 62
Buffers 96
Memory management

Memory management overview /15
The Heap manager /23

Dynamic areas /36

C storage manager /86

Kernel and environment

Modules

Using modules 792
Writing a module 245

Input and output

VDU codes 296

File systems

FileCore disc formats 333
RAMFS 358

PRM-in-XML default (PDF): contents page

20

PRM-in-XML style gallery

An introduction to RISC OS

Introduction

RISC OS is an operating system, originally written by Acorn Computers Ltd for the
machines that they built. Since the buyout of Acorn via Element 14 by Pace Microsystems
in 1998, the desktop development has been taken over by RISC OS Ltd. who license
development from Pace.

Like any operating system, it is designed to provide the facilities that you, the programmer,
need to control your computer and to get the most out of the programs you write for it.

PRM-in-XML default (PDF): intro chapter (1)

21

PRM-in-XML: Default configuration

22

Structure

RISC OS has a kernel which contains the main functions that the operating system needs.
To this are added various modules that extend the system, adding such facilities as filing
systems, a window manager, a font manager, and so on. These are called system extension
modules:

System
extension
modules

The structure of RISC OS

The modules and the kernel provide their facilities very similarly, and there are few
occasions when you will be able to distinguish whether the facilities you are using are
provided by the kernel or by a system extension module. You are most likely to notice the
difference if you wish to alter or replace part of the operating system.

PRM-in-XML default (PDF): intro chapter (2)

PRM-in-XML style gallery

SWI Calls

0S_Claim
(SWI &1F)

Adds a routine to the list of those that claim a vector

On entry
RO=vector number (see List of software vectors (on page 40))

R1=address of claiming routine that is to be added to vector
R2=value to be passed in R12 when the routine is called

On exit
RO - R2 preserved

Interrupts

Interrupts are disabled
Fast interrupts are enabled

Processor mode
Processor is in SVC mode

Re-entrancy

SWI1 is not re-entrant

Use

This call adds the routine whose address is given in R1 to the list of routines claiming the
vector. This becomes the first routine to be used when the vector is called.

Any identical earlier instances of the routine are removed. Routines are defined to be
identical if the values passed in RO, R1 and R2 are identical.

The R2 value enables the routine to have a workspace pointer set up in R12 when it is
called. If the routine using the vector is in a module (as will often be the case), this pointer
will usually be the same as its module workspace pointer.

Note that this SWI cannot be re-entered as it disables [RQs.

PRM-in-XML default (PDF): SWI definition

23

PRM-in-XML: ‘prm' configuration

PRM-in-XML: 'prm' configuration

24

The 'prm' configuration of PRM-in-XML tries to mimic the printed form of the
reference manuals much more closely. Whilst the default style is intended for general
use the 'prm' style is intended for cases where the look of the RISC OS 3 PRMs is
desired.

The variant setting used in this configuration was:

. 'prm': PRM style

. 'body-novarese': Use ITC Novarese font for the body.

. 'heading-raleway': Use Raleway as a reasonable approximation.
. 'large-bullets': Use the larger bullets.

Features of this configuration:

» Font is slightly smaller than the default.

. Horizontal grey bars used to divide chapters and sections.

. Alignment of headings is closer to the original style.

. Relative sizes of headings are closer to the original style.

. Bullets sit closer to the left edge, and are themselves larger, closer to the original.

. The PDF generated pages are much closer to the original style.

. Within the PDF, the chapter heading is indented to match the text, leaving space
for a chapter number (which is not currently implementated).

. Within the PDF, he edge index is present, and included the name of the document
group configured within the chapter.

* When printed, the API definitions describe each related SWI on a separate line to
make it easier to see the page numbers.

. In the PDF, the page headers include the chapter and section names, and footers
include the page number.

PRM-in-XML style gallery

Example pages (HTML)

Contents

(umbe (umben (umber (umber (numbed (numben

Overview

‘About this documentation
An Introduction to RISC 0S
Generating and handling errors
Software vectors

Events

Buffers.

Memory management

Memory management overview
The Heap manager

Dynamic areas

C storage manager

Kernel and environment

Modules

Using modules
Writing a module

Input and output

VDU codes

File systems

EileCore disc formats
RAMFS

NetPrint

Pipefs

DeviceFS

CDs and CD-ROMs
EileTypes module

Writing file systems

‘Writing a device driver

Obsolete

DeskFs

Networking

Access
Ereeway
Resolver
MimeMap

Legacy networking

Econet
The Broadcast Loader
BEC Econet
Netstatus

(numben

(Contents Commands SWis UpCalls Messages Services Vectors SysVars Entrypoints Emors VDUcodes IBoxmethods IBoxmessages

(oumber)

PRM-in-XML 'prm': contents page

25

=
(7]
(g}
(o}
(7]
it
o
“
Y
3
3
(]
=
n
A
&l
o
=
(]
=]
2]
(]
=
o
=]
c
=)
7]

PRM-in-XML: 'prm' configuration

26

An introduction to RISC OS

Contents

© Introduction
® Structu:
® Eacilities
® Altering and extending RISC OS
® Modules
® Vectors
® How RISC 08 s written
® How RISC 08 is supplied
® The history of RISC OS

Introduction

RISC OS s an operating system, originally written by Acom Computers Ltd for the machines that they built Since the buyout of Acorn via Element 14 by Pace Mictosystems in 1998, the desktop
development has been taken over by RISC OS Ltd. who license development from Pace

Like any operating system, it is designed to provide the facilities that you, the programmer, need to control your computer and to get the most out of the programs you write for it

Structure

RISC 0S has a kernel which contains the main functions that the operating system needs. To this are added various modules that extend the system, adding such facilities as filing systems, a
window manager, a font manager, and so on. These are called system extension modaules:

Kernel System
extension
modules

The structure of RISC OS

The modules and the kemel provide their facilities very similarly, and there are few occasions when you will be able to distinguish whether the facilities you are using are provided by the kernel
or by a system extension module. You are most likely to notice the difference if you wish to alter or replace part of the operating systen.

Facilities
You can view RISC OS as a collection of routines that provide you with a wide range of facilities. You can get a good overview of the range that is covered from the earlier contents pages of this
manual.
This collection of routines can be broadly divided into three levels:

® Those that RISC OS tself uses 1o automatically perform low-level tasks, such as interrupt handling
® Those that provide sophisticated and powerful interfaces for you to use from programs, which are known as SoftWare Interrupts, or SWIs for short
@ Those that provide simpler calls that can be used from the cormmand line as well as from programs - these are the * Commands that you are probably already familiar with

There are chapters later in this part of the manual that cover the above topics in more detail. They are entitled:

® fernelintermupls
® fernelisuis
® fernelCLI

Altering and extending RISC OS

You can easily alter or extend RISC OS, because so much of

s written as modules.

Modules

PRM-in-XML 'prm': intro chapter

PRM-in-XML style gallery

SWI Calls

0OS_Claim
(SWI &1F)

Adds a routine to the list of those that claim a vector

Onentry
RO = vector number (see List of softvare vetors)
RI = address of claiming routine that is to be added to vector
R2 = value to be passed in R12 when the routine is called

On exit

RO-R2 preserved
Interrupts

Interrupts are disabled

Fast interrupts are enabled

Processor mode
Processor is In SVC mode.

Re-entrancy
SWis not re-entrant

Use

This call adds the routine whose address is given in Rl to the list of routines claiming the vector. This becomes the first routine to be used when the vector is called.

Any identical earlier instances of the routine are removed tobe identical it passed in RO, R1 and R2 are identical

The R2 value enables the routine to have a workspace pointer set up in R12 when it s called. If the routine using the vector is in a module (as will often be the case), this pointer will usually be
the same as its module workspace pointer.

Note that this SWI cannot be re-entered as it disables IRQs
Examples

MOV RO, #ByteV

ADR R1, MyByteHandler

MOV R2, #8

SWI

5_Clain”

Related SWis
0S Release, OS_CallAVector, 05 AddToVector

OS_Release
(SWI &20)

Removes a routine from the list of those that claim a vector

Onentry
RO = vector number (see List of software vectors)
R1 = address of routine that is to be released from vector
R2 = value given in R2 when claimed

On exit
RO - R2 presenved

Interrupts
Interrupts are disabled
Fast Interrupts are enabled

Processor mode
Processor is in SVC mode.

PRM-in-XML ‘prm': SWI definition

27

=
(7]
(g}
(o}
(7]
it
o
“
Y
3
3
(]
=
n
A
&l
o
=
(]
=]
2]
(]
=
o
=]
c
=)
7]

PRM-in-XML: 'prm' configuration

Example pages (PDF)

28

Contents

Overview

About this documentation 9

An Introduction to RISC 0S 18
Generating and handling errors 25
Software vectors 37

Events 65

Buffers 99

Memory management

Memory management overview 118
The Heap manager 128

Dynamic areas 143

C storage manager 196

Kernel and environment

Modules

Using modules 202
Writing a module 260

Input and output

VDU codes 311

File systems

FileCore disc formats 348

PRM-in-XML 'prm' (PDF): contents page

PRM-in-XML style gallery

An introduction to RISC OS

Introduction

RISC OS is an operating system, originally written by Acorn Computers Ltd
for the machines that they built. Since the buyout of Acorn via Element 14
by Pace Microsystems in 1998, the desktop development has been taken
over by RISC OS Ltd. who license development from Pace.

Like any operating system, it is designed to provide the facilities that you,
the programmer, need to control your computer and to get the most out of
the programs you write for it

=
(7]
(g}
(o}
(7]
it
o
“
Y
3
3
(]
=
n
A
&l
o
=
(]
=]
2]
(]
=
o
=]
c
=)
7]

18

PRM-in-XML 'prm' (PDF): intro chapter (1)

29

PRM-in-XML: 'prm' configuration

30

An introduction to RISC OS

Structure

RISC OS has a kernel which contains the main functions that the operating
system needs. To this are added various modules that extend the system,
adding such facilities as filing systems, a window manager, a font manager,
and so on. These are called system extension modules:

The structure of RISC OS

The modules and the kernel provide their facilities very similarly, and there
are few occasions when you will be able to distinguish whether the facilities
you are using are provided by the kernel or by a system extension module.
You are most likely to notice the difference if you wish to alter or replace
part of the operating system.

19

ext

PRM-in-XML 'prm' (PDF): intro chapter (2)

PRM-in-XML style gallery

Software vectors

SWI Calls

OS_Claim
(SWI &1F)

Adds a routine to the list of those that claim a vector

On entry

RO =vector number (see List of software vectors (on page 42))
R1 = address of claiming routine that is to be added to vector
R2=value to be passed in R12 when the routine is called

On exit
RO - R2 preserved

=
(7]
(g}
(o}
(7]
it
o
“
Y
3
3
(]
=
n
A
&l
o
=
(]
=]
2]
(]
=
o
=]
c
=)
7]

Interrupts

Interrupts are disabled
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

SWI is not re-entrant

51

PRM-in-XML 'prm' (PDF): SWI definition (1)

31

PRM-in-XML: 'prm' configuration

32

SWi Calls

Use
This call adds the routine whose address is given in R1 to the list of
routines claiming the vector. This becomes the first routine to be used when

the vector is called.

Any identical earlier instances of the routine are removed. Routines are
defined to be identical if the values passed in RO, R1 and R2 are identical

The R2 value enables the routine to have a workspace pointer set up in R12
when it is called. If the routine using the vector is in a module (as will often
be the case), this pointer will usually be the same as its module workspace
pointer.

Note that this SWI cannot be re-entered as it disables IRQs.

Examples
MOV RO, #ByteV
ADR R1, MyByteHandler
MOV R2, #0

SWI "0S_Claim"

Related SWls

OS_Release (on page 53)
QS_CallAVector (on page 55)
OS_AddToVector (on page 57)

52

PRM-in-XML ‘prm' (PDF): SWI definition (2)

PRM-in-XML style gallery

PRM-in-XML: 'prm-ro2' configuration

The 'prm-ro2' configuration of PRM-in-XML tries to mimic the RISC OS 2 PRMs. It is
not a complete configuration, but it is highly effective at present..

The variant setting used in this configuration was:

. 'prm': PRM style

. 'prm-ro2": RISC OS 2 style (layers on top of the base PRM style)
. 'body-fraunces': Use Fraunces font for the body.

. 'heading-raleway': Use Raleway as a reasonable approximation.
* 'large-bullets": Use the larger bullets.

Features of this configuration:

* Not really suitable for use on the desktop at the current time - really only for PDF.

. Separated headings and content style, like the RISC OS 2 PRMs is reproduced.

. Style is retained in both the contents and the chapter pages.

. Sometimes the layout of the headings on the left overlap when the sections are
small. Some of this is avoided but it's not perfect.

. The HTML form has contents section that looks unsightly.

. PDF version lays out well.

. Page numbers are positioned appropriately in a vertical line away in the contents.

. API page looks very close to the original.

33

PRM-in-XML: 'prm-ro2' configuration

Example pages (HTML)

34

Contents

Kernel and environment
Modules

Input and output

File systems

Witing file systems
Obsolete

Networking

Legacy networking

The desktop
‘The window manager

Toolbox

Buffers

Memory management overview
The Heap manager

Dynanic areas

C storage manager

Writing a module

VDU codes

CDs and CD-ROMs
leTyrpes module

Writinga device driver

DeskFs

Window:
Wimp, des
on validation

Menu object

PrintDBox object

PRM-in-XML 'prmro2': contents page

PRM-in-XML style gallery

An introduction to RISC OS
Contents m
ST 3
]
® Facilities Q
Modules)
=
@ How RISC O is written 3
ol s supplied E
3
Introduction RISC OS is an operating system, originally written by Acorn Computers Ltd. they built Since the via Element 14 by P 1998, the desktop a
development has been taken over by RISC OS Ltd. who license development from Pace.
Ll i itis designed to provide il 1 the computer and forit g
=
Structure ISC S hasakermetich Actons tat e nect cxint hesysem aaing ich s s Bling s & o
nt d ic 3
=]
2]
(]
o
3
f=
2
System [
extension
modules
The structure of RISC OS
Ti kernel provide their 7. and ions when you will be able to distinguish whether the facilities you are using are provided by the kernel
® Those that RISC OS itself uses perform low-level tasks, such
Ti in in more detail. They are entitled:
@ kernel/interryprs.
® kerned swis.
o) .
Yo RACOS ol Your S ———
Vectors is 50 large, it ‘you to change it in the same way. You can instead make changes by using vectors.
Avector i ies that RISC i w© functi by SWs. . and redi
5 ‘your own. Your and output to the original SW, but it can behave in a totally different manner - just as if you are replacing a
e
Some vectors are used by just one SWI, but athers are used by several SWIs that functions. P by claiming just one vector - for
Afew vectors are not used by SWIs at all, but instead by other parts of RISC OS, to perform functions for which SWIs do not provide an interface.
For more information, see the kernel softvect.
j ! 20 h
PRM-in-XML 'prmro2': intro chapter

35

PRM-in-XML: ‘prm-ro2’ configuration

SWiCalls .
0OS_Claim
‘Adds a routine to the list of those that claim a vector
Onentry RO = vector number (see List of software veetors)
Rl = address of claiming routine that is to be added to vector
20 - vl o b pased 2 whenthe e s called
Onesit RO- B2 preserved
temupts P——
Fa e e cnbled
brocesormode rocesonis i SVC mde
Re-entrancy SW1is not re-entrant
use Thicll ads th rin whose ces g i 1 hels ofsoutins ming h vectr Thisbecorne th st e b s when e vesto sl
Any den st e Rouines are defned 1 b denical f h vl pased R0 Rl ad 2 el
The R2 have a wor et up in RI2 when itis called. I s in a modlule (s will often be the case), this pointer will usually be the
came 2 s modleworpsn o
Note that this SWI cannot be re-entered as it disables IRQs.
Eramples Hov Ro, ytey
ADR R1, MyByteHandler
wov k2, #0
SWI "0S_Claim"
Related SWis OS Releage, OS CallAVector, OS AddToVector
OS_Release
Removes e o h o hose tht i vectr
onenty R0 - vcto numbs e Listfsftare etors
1~ e of i ot 1 o rlesed o veccr
22 vl gven n 82 hen limed
Onexit RO- R2 preserved
temupts P———
Fastinterrupts are enabled
brocesormode rocesonis i SVC mde
Re-entancy TS
Use ‘This call removes the routine, which is identified by both its address and workspace pointer, from the list for the specified vector. The routine will no longer be called. 1f more than one copy of the
Touine s daming o vt ol h e e 0 b calle 8 removed
Note that this SWI cannot be re-entered as it disables IRQs.
Eramples Hov Ro, ytey
ADR R1, MyByteHandler
wov k2, #0
SWI "0S_Release"
Related SWis 08 n, OS CallAVector, OS_AddToVector
0Os_CallAvector
Calsavectr dieety
Onenty 50~ RS - vectrsutineparametes
9 vctor number G Lt ofsouar)
Onexit RO - R9 = Dependent on vector called
temupts P———
Fa oo e cbled
brocesormode rocesonis i SVC mde
Re-entrancy SWis re-entrant
vse o5 s in R RO the ectred sutins e he .
This is used for i RemV or CrpV:. It is also used by s as the Draw, ColourTrans and.
Econe module 0ol i coresponing s
Vo st nt s this SVt el Byt and ot such vctors, -
Note that although this SW1is re-entrant, the vectors that it calls may not be.
PRM-in-XML 'prmro2': SWI definition

36

PRM-in-XML style gallery

Example pages (PDF)

Contents

Memory management

Kerel and environment
Modules

Input and output

File systems

About this decumentation

An Introduction to RISC 08
Generating and handling errors
Software vectors

Events

Buffers

Memory management overview
The Heap manager
Dynamic areas

C storage manager

Using modules
Wriling a module

VDU codes

FileCore disc formats
RAMFS
NetPrint

16

35
56
89

102
112
125
173

181
233

281

318
546
385

PRM-in-XML 'prmro2' (PDF): contents page

37

=
(7]
(g}
(o}
(7]
it
o
“
Y
3
3
(]
=
n
A
&l
o
=
(]
=]
2]
(]
=
o
=]
c
=)
7]

PRM-in-XML: 'prm-ro2' configuration

38

An introduction to RISC OS

Introduction RISC OS is an operating system, originally written by Acorn Computers Ltd for
the machines that they built. Since the buyout of Acorn via Element 14 by Pace
Microsystems in 1998, the desktop development has been taken over by RISC OS
Lid. who license development from Pace.

Like any operating system, it is designed to provide the facilities that you, the

programmer, need to control your computer and to get the most out of the
programs you write for it.

16 An introduction to RISC OS: Contents

PRM-in-XML ‘prmro2' (PDF): intro chapter (1)

PRM-in-XML style gallery

Structure RISC OS has a kernel which contains the main functions that the operating
system needs. To this are added various modules that extend the system, adding
such facilities as filing systems, a window manager, a font manager, and so on.
These are called system extension modules:

The structure of RISC OS

The modules and the kernel provide their facilities very similarly, and there are
few occasions when you will be able to distinguish whether the facilities you are
using are provided by the kernel or by a system extension module. You are most
likely to notice the difference if you wish to alter or replace part of the operating
system.

An introduction to RISC OS: Structure 17

PRM-in-XML 'prmro2’ (PDF): intro chapter (2)

39

PRM-in-XML: 'prm-ro2' configuration

40

SWi Calls

On entry

On exit

Interrupts

Processor mode
Re-entrancy

Use

46

OS_Claim
(SWI &1F)

Adds a routine to the list of those that claim a vector

RO = vector number (see List of software vectors (on page 59))
R1= address of claiming routine that is to be added to vector
R2 =value to be passed in R12 when the routine is called

RO - RZ preserved

Interrupts are disabled
Fast interrupts are enabled

Processor is in SVC mode

SWI is not re-entrant

This call adds the routine whose address is given in Rl to the list of routines
claiming the vector. This becomes the first routine to be used when the vector is

called.

Any identical earlier instances of the routine are removed. Routines are defined
to be identical if the values passed in RO, Rl and R2 are identical.

The R2 value enables the routine to have a workspace pointer set up in R12 when
it is called. If the routine using the vector is in a module (as will often be the case),

this pointer will usually be the same as its module workspace pointer.

Note that this SWI cannot be re-entered as it disables IRQs.

Software vectors: SWI Calls

PRM-in-XML 'prmro2’ (PDF): SWI definition (1)

PRM-in-XML style gallery

Examples

Related SWis

Software vectors: SWI Calls

MOV RO, #ByteV

ADR R1, MyByteHandler
MOV RZ, #0

SWI "OS_Claim"
0S_Release (on page 48)

05_CallAVector (on page 49)
0S_AddToVector (on page 50)

47

PRM-in-XML 'prmro2' (PDF): SWI definition (2)

41

=
(7]
(g}
(o}
(7]
it
o
“
Y
3
3
(]
=
n
A
&l
o
=
(]
=]
2]
(]
=
o
=]
c
=)
7]

PRM-in-XML: ‘c release 4' configuration

PRM-in-XML.: 'c release 4' configuration

The 'C release 4' configuration of PRM-in-XML adds a few small things that match that
manual. It is not a complete configuration, but it demonstrates the ability to vary the
layout.

The variant setting used in this configuration was:

. 'prm': PRM style
. 'prm-ro2": RISC OS 2 style (layers on top of the base PRM style)

. 'body-fraunces': Use Fraunces font for the body.

. 'heading-raleway': Use Raleway as a reasonable approximation.

. 'large-bullets': Use the larger bullets.

. 'drop-character": Initial drop character on the first character of the first paragraph.

. Additionally the setting to include the sections in the contents was enabled in the
contents generation, for a depth of 1 level.

Features of this configuration:
. Exhibits the same flaws as the PRM-ro2 version; there's only a few changes.
. Sections are expanded and linked in the contents page.

. Drop characters are present on the chapter pages.
. In the PDF, the links on the contents page are indented further for the sections.

42

PRM-in-XML style gallery

Example pages (HTML)

Contents

Overview ‘About this documentation

About this manual
mmary of contents.

Finding out more:

An Introduction o RISG 05

Introduction

ructure
Facilties
‘Aliering and extending RISC OS

Generating and handling errors

Introduction
Error handling
Error blocks

Technical details of error-generating SWls
Generating errors
stem extension code

=
(7]
(g}
(o}
(7]
it
o
“
Y
3
3
(]
=
n
A
&l
o
=
(]
=]
2]
(]
=
o
=]
c
=)
7]

Software vectors
Introduction

Overview,
Technical details
VI Calls

Software vectors

Events

Introduction
Technical details
SWI Calls
Wectors

Buffers
Introduction
Overview,
Technical details
SWiealls

Introduction

Technical details

The Heap manager

Introduction and Overview
Technical details
SWiealls

Dynamic areas
Introduction and Overview

Terminology
Techrical Details

‘Eniry Points
*

Cstorage manager

Introduction and Overview
Technical Details

Modules Using modules

PRM-in-XML 'C release 4': contents page

43

PRM-in-XML.: 'c release 4' configuration

44

An introduction to RISC OS

Contents.

Introduction
Structure

. Altering - ermgaz\dex ending RISC OS

@ How RISCOS s
‘@ The history oI RI

Introduction

Structure

Modules

Vectors

How RISC OS is written

C OS is an operating system, mgmauwmen by Acorn Computers Ltd for the machines that they bui
desktop development has n over by RISC OS Lid, who license development from Pace.

Since the buyout of Acorn via Element 14 by Pace Microsystems in 1998, the

L it s designed to provide the faci d computer and to get th forit,

s & kernel which contains the main functions that the operating system nieeds. To this are added various modules that extend the system, adding such facilities as filing systems, a
window manager, a font manager, and so on. These are called system extension modules:

Kernel System
extension
modules

The structure of RISCOS

The modules and the ernel provide ther faciies very similarly,and thre a fw accasions when you will b able to distnguish whetherth fasitesyou are using are provided by the kernel
orbyas You likel y toalier or

You can view RISC OS as a collection of routines that provide you with a wide range of faciliies. You can get a good overview of from the earlier this

‘This callection of routines can be broadly divided into three levels:

® Those that RISC OS itself uses 10 automatically perform low-Level tasks, suich as interrupt handlin
® “Those that provide sophisticated and powertul interfaces for you to use from programs, which are knorwn as Soft¥are Interrupts, or SWis for short
® “Those that provide simpler calls that can be used rom the command line as well s from programs - these are the * Commands that you are probably already familiar with

There a

chapters later n.this part of the manual that cover the above topics in more detail. They are entied:

© Jernelfinterrupts
© ernel/ouis
© Jernel/CLI

Vou can easily aker or extend RISC OS, because so much of it is written

Each standard, which
conform to this standard, so you can add things to RIS

a buili-in! You too can hat

you please.

You can also rewrite any of the standard RISC OS modules. Your replacement must provide the same entry points, and return values in the same way - but its internal workings can be
Seeth

Because the kemel is o large, itwould not be easy for you to change it n the same way. You can instead make changes by using vectors.

A vector is chain of entries that RISC OS uses control toso it ca function used by SWIs. i ; and redirect those
Wi tocode o your own. Your code must accept th same input and provide similar output o the orginal SWL but it can behave in a totally diferent manner - fust s f you ae replacing
module

Some vectors are used by just one SWI, but others are used by several SWIs that perform functions
example, SWIs that output characters.

W1 just one vector - far

A few vectors are not used by SWIs at all,but instead by other parts of RISC O, to perform functions for which SWIs do not provide an interface.

For more information, see the kermel softvect.

Much of RISC OS - including the kerne! - s written in ARM assembler. Some other parts - such as the Filer_Action system extension module - are written in C, and so need the Shared C Library
towork,

PRM-in-XML 'C release 4': intro chapter

PRM-in-XML style gallery

Example pages (PDF)

Contents

=
(7]
(g}
(o}
(7]
it
o
“
Y
3
3
(]
=
n
A
&l
o
=
(]
=]
2]
(]
=
o
=]
c
=)
7]

Overview About this documentation 30
About this manual 30
Summary of contents 32
Conventions used 34
Finding out more 35
An Introduction to RISC OS 38
Introduction 38
Structure 39
Facilities 40
Altering and extending RISC 08 4l
Generating and handling errors 45
Introduction 45
Error handling 46
Error blocks 47
Error numbers 48
‘Technical details of error-gencrating SWls
Generating errors 51
‘Writing system extension code 52
SWI Calls 53
* Commands 55

PRM-in-XML 'C release 4' (PDF): contents page

45

PRM-in-XML.: 'c release 4' configuration

46

An introduction to RISC OS

Introduction ISC OS is an operating system, originally written by Acorn Computers Ltd
for the machines that they built, Since the buyout of Acorn via Element 14 by
Pace Microsystems in 1998, the desktop development has been taken over
by RISC OS Ltd. whe license development from Pace.

Like any operating system, it is designed to provide the facilities that you, the

programmer, need to control your computer and to get the most out of the
programs you write for it.

38 An introduction to RISC OS: Contents

PRM-in-XML 'C release 4' (PDF): intro chapter

PRM-in-XML style gallery

PRM-in-XML: 'acornfs' configuration

The 'Acorn functional spec' configuration of PRM-in-XML tries to mimic the style of
the functional specifications that Acorn produced in the later years It is not a complete
configuration, but it demonstrates the ability to vary the layout.

The variant setting used in this configuration was:

. 'acornfs': Acorn Functional Specification variant
. 'body-fraunces': Use Fraunces font for the body.
. 'heading-raleway': Use Raleway as a reasonable approximation.

* 'large-bullets": Use the larger bullets.
Features of this configuration:

. Green dividing lines instead of grey.

. Green link text.

* Chapter and section headings are centred.

. All text is left aligned, with no indentation.

. Subsection, subsubsection, category are left aligned, with small indentations to
show nesting.

. API page has a similar style to the PRMs, but is less indented.

. The API name is given a grey border.

. API description is right aligned and italic.

47

PRM-in-XML.: 'acornfs' configuration

Example pages (HTML)

48

Contents

Confents Commands SWis UpCalls Messages Services Vectors SysVars Entry points Errors

VDU codes

TBox methods

(numben (umber) (numben {number) (number) (numben)

TBox messages
(umber)

{number)

Overview

About this documentation

About this manual
Summary of contents
Conventions used
Finding out more

An Introduction to RISC OS

Introduction

Structure

Facilities

Altering and extending RISC OS

Generating and handling errors

Introduction

Error handling

Errorblocks

Error numbers

Technical details of error-generating SWls
Generating errors

Writing system extension code

SWI Calls

* Commands

Software vectors

Introduction
Overview
Technical details
SWI Calls
Software vectors

Events

Introduction
Technical details
SWI Calls
Vectors

Buffers
Introduction
Overview

Technical details
SWI calls

Memory management

Memory management overview

Introduction
Overview
Technical details

PRM-in-XML 'acornfs': contents page

PRM-in-XML style gallery

An introduction to RISC OS

Contents

o Introduction
tructure

® Facilities

e Altering and extending RISC OS
o Modules
o Vectors
o How RISC OS is written
o How RISC OS is supplied
o The history of RISC OS

Introduction

RISC OS s an operating systern, originally writien by Acorn Computers Lid for the machines that they built. Since the buyout of Acarn via Element 14 by Pace
Microsystems in 1998, the deskiop development has been taken over by RISC OS Lid, who license development from Pace.

Like any operating system, it is designed to provide the facilities that you, the programmer, need to control your computer and to get the most out of the programs you
write for it.

Structure

RISC OS has a kernel which contains the main functions that the operating system needs. To this are added various modules that extend the system, adding such facilities
as filing systems, a window manager, a font manager, and so on. These are called system extension modules

Kernel System
extension
modules

The structure of RISC OS

The modules and the kernel provide their facilities very similarly, and there are few occasions when you will be able to distinguish whether the facilities you are using are
provided by the kernel or by a system extension module. You are most likely to notice the difference if you wish to alter or replace part of the operating system.

Facilities

You can view RISC OS as a collection of routines that provide you with a wide range of facilities. You can get a good overview of the range that is covered from the earlier
contents pages of this manual.
This collection of routines can be broadly divided into three levels:

o Those that RISC OS itself uses to automatically perform low-level tasks, such as interrupt handling

o Those that provide sophisticated and powerful interfaces for you to use from programs, which are known as SoftWare Interrupts, or SWis for short.

o Those that provide simpler calls that can be used from the command line as well as from programs - these are the ¥ Commands that you are probably already

familiar with.

There are chapters later in this part of the manual that cover the above topics in more detail. They are entitled

o kernel/interrupts.
o kernel/swis

PRM-in-XML 'acornfs': intro chapter

49

PRM-in-XML.: 'acornfs' configuration

50

SWI Calls
OS_Claim
(SW/18dF)

Adds a routine to the list of those that claim a vector

On entry
RO = vector number (see List of software vectors)

R1 = address of claiming routine that is to be added to vector
R2 = value to be passed in R12 when the routine is called

On exit
RO - R2 preserved

Interrupts

Interrupts are disabled
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy
SWI1 is not re-entrant

Use
This call adds the routine whose address is given in Rl to the list of routines claiming the vector. This becomes the first routine to be used when the vector is called.
Any identical earlier instances of the routine are removed. Routines are defined to be identical if the values passed in RO, Rl and R are identical.

The R2 value enables the routine to have a workspace pointer set up in RI2 when it is called. If the routine using the vector is in a module (as will often be the case),
this pointer will usually be the same as its module workspace pointer.

Note that this SWI cannot be re-entered as it disables IRQs.

Examples
MOV Re, #ByteV
ADR R1, MyByteHandler
MOV R2, #0

SWI “05_Claim"

Related SWis
OS Release s OS_CallAVector s 0OS_AddToVector
OS_Release
(SW1&20)
Removes a routine from the list of those that claim a vector
On entry

RO = vector number (see List of software vectors
RI = address of routine that is to be released from vector
R2 = value given in R2 when claimed

On exit
RO- R2 preserved

PRM-in-XML 'acornfs': SWI definition

PRM-in-XML style gallery

Example pages (PDF)

Contents

Overview

About this documentation 27

About this manual 27
Summary of contents 29
Conventions used 37
Finding out more 35

=
(7]
(g}
(o}
(7]
it
[o]
“
Y
3
3
(]
@
A
o
o
=
(]
=]
2]
(]
=
o
=]
f=
=)
o

An Introduction to RISC OS 36

Introduction 36
Structure 37
Facilities 38

Altering and extending RISC OS 39

Generating and handling errors 45

Introduction 43

Error handling 44

Error blocks 45

Error numbers 46

Technical details of error-generating SWis 48
Generating errors 49

Writing system extension code 50

SWI Calls 51

* Commands 53

Software vectors 55

Introduction 55
Overview 56
Technical details 58
SWI Calls 67
Software vectors 78

PRM-in-XML 'acornfs' (PDF): contents page

51

PRM-in-XML.: 'acornfs' configuration

52

An introduction to RISC OS

Introduction

RISC OS is an operating system, originally written by Acorn Computers Ltd for the machines
that they built. Since the buyout of Acorn via Element 14 by Pace Microsystems in 1998, the
desktop development has been taken over by RISC OS Ltd. who license development from Pace.

Like any operating system, it is designed to provide the facilities that you, the programmer, need
to control your computer and to get the most out of the programs you write for it.

PRM-in-XML 'acornfs' (PDF): intro chapter (1)

PRM-in-XML style gallery

Structure

RISC OS has a kernel which contains the main functions that the operating system needs. To
this are added various modules that extend the system, adding such facilities as filing systems,
a window manager, a font manager, and so on. These are called sy i dul

System
extension
modules

The structure of RISC OS

The modules and the kernel provide their facilities very similarly, and there are few occasions
when you will be able to distinguish whether the facilities you are using are provided by the
kernel or by a system extension module. You are most likely to notice the difference if you wish
to alter or replace part of the operating system.

PRM-in-XML 'acornfs' (PDF): intro chapter (2)

53

PRM-in-XML.: 'acornfs' configuration

54

SWI Calls

0OS_Claim
(SW1&1F)

Adds a routine to the list of those that claim a vector

On entry
RO =vector number (see List of software vectors (on page 59))

Rl =address of claiming routine that is to be added to vector
R2=value to be passed in R12 when the routine is called

On exit
RO - R2preserved

Interrupts

Interrupts are disabled
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

SWl s not re-entrant

PRM-in-XML 'acornfs' (PDF): SWI definition (1)

PRM-in-XML style gallery

Use

This call adds the routine whose address is given in R1 to the list of routines claiming the
vector. This becomes the first routine to be used when the vector is called.

Any identical earlier instances of the routine are removed. Routines are defined to be
identical if the values passed in RO, R1 and R2 are identical.

The R2 value enables the routine to have a workspace pointer set up in R12 when it is
called. If the routine using the vector is in a module (as will often be the case), this pointer

will usually be the same as its module workspace pointer.

Note that this SWI cannot be re-entered as it disables IRQs.

Examples

MOV RO, #ByteV
ADR R1, MyByteHandler
MOV R2, #0

SWI "0S_Claim"

Related SWIis

OS_Release (on page 69
OS CallAVector (on page 71)
OS_AddToVector (on page 73)

PRM-in-XML 'acornfs’ (PDF): SWI definition (2)

55

=
(7]
(g}
(o}
(7]
it
o
“
Y
3
3
(]
=
n
A
&l
o
=
(]
=]
2]
(]
=
o
=]
c
=)
7]

Document information

Document information

Maintainer(s): Gerph <gerph@gerph.org>
History: Revision Date Author Changes
1 31 Aug 2021 Gerph Initial version

 Created the collection of Acorn
examples from PDFs.

* Created a few examples from the
existing content as HTML and PDFs
and then described them.

Related: RISC OS 2 PRM PDF
C Release 4 PDF
RISC OS 3 PRM PDF
Volume 5a PRM PDF
Disclaimer: © Gerph, 2021

56

mailto:gerph@gerph.org
https://www.4corn.co.uk/archive/docs/RISC%20OS%20Programmer's%20Reference%20Manual%20-%20Volume%201-opt.pdf#link_risc_os_2_prm_pdf
https://www.4corn.co.uk/archive/docs/Acorn%20ANSI%20C%20Release%204-opt.pdf#link_c_release_4_pdf
https://www.4corn.co.uk/archive/docs/RISC%20OS%203%20Programmers%20Reference%20Manual%20-%20Volume%201-opt.pdf#link_risc_os_3_prm_pdf
https://www.4corn.co.uk/archive/docs/RISC%20OS%203%20Programmers%20Reference%20Manual%20-%20Volume%205a-opt.pdf#link_volume_5a_prm_pdf

	RISC OS Programmers Reference ManualsPRM-in-XML style gallery
	Introduction
	Example pages
	Acorn manuals
	PRM-in-XML formats

	Acorn: RISC OS 2 manuals
	Example pages

	Acorn: Acorn C Release 4
	Example pages

	Acorn: RISC OS 3 manuals
	Example pages

	Acorn: RISC OS 3 manual, volume 5a
	Example pages

	PRM-in-XML: Default configuration
	Example pages (HTML)
	Example pages (PDF)

	PRM-in-XML: 'prm' configuration
	Example pages (HTML)
	Example pages (PDF)

	PRM-in-XML: 'prm-ro2' configuration
	Example pages (HTML)
	Example pages (PDF)

	PRM-in-XML: 'c release 4' configuration
	Example pages (HTML)
	Example pages (PDF)

	PRM-in-XML: 'acornfs' configuration
	Example pages (HTML)
	Example pages (PDF)

	Document information
	Initial version

